Câu hỏi:
12/07/2024 3,135Câu hỏi trong đề: Giải SBT Toán 10 Bài 22. Ba đường conic có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Áp dụng định lí côsin trong tam giác MF1F2, ta có
\(\cos \widehat {{F_1}M{F_2}} = \frac{{MF_1^2 + MF_2^2 - {F_1}F_2^2}}{{2.M{F_1}.M{F_2}}}\)
\( = \frac{{{{\left( {\sqrt 2 + \frac{{{x_0}}}{{\sqrt 2 }}} \right)}^2} + {{\left( {\sqrt 2 - \frac{{{x_0}}}{{\sqrt 2 }}} \right)}^2} - {2^2}}}{{2.\left( {\sqrt 2 + \frac{{{x_0}}}{{\sqrt 2 }}} \right).\left( {\sqrt 2 - \frac{{{x_0}}}{{\sqrt 2 }}} \right)}} = \frac{{x_0^2}}{{4 - x_0^2}}\)
Ta có: \(\frac{{x_0^2}}{2} = 1 - y_0^2 \le 1\) ⇔ 0 ≤ x02 ≤ 2 ⇒ 4 – x02 > 0.
Suy ra \(\cos \widehat {{F_1}M{F_2}} \ge 0 \Rightarrow \widehat {{F_1}M{F_2}} \le 90^\circ \)
Dấu bằng xảy ra khi và chỉ khi x0 = 0 ⇒ y0 = ±1
Vậy M(0; 1) hoặc M(0; –1) thì M nhìn hai tiêu điểm dưới góc nhìn lớn nhất.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Giả sử phương trình chính tắc của (E) là: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) (trong đó a > b > 0).
Vì chiều rộng của hầm là 12 m nên OA = 12 : 2 = 6 (m), do đó điểm A có tọa độ (6; 0).
Khoảng cách từ điểm cao nhất của elip so với mặt đường là 3 m nên OB = 3 m, do đó điểm B có tọa độ (0; 3).
Do các điểm B(0; 3) và A(6; 0) thuộc (E) nên thay vào phương trình của (E) ta có:
\(\frac{{{0^2}}}{{{a^2}}} + \frac{{{3^2}}}{{{b^2}}} = 1 \Rightarrow {b^2} = {3^2} = 9\)
\(\frac{{{6^2}}}{{{a^2}}} + \frac{{{0^2}}}{{{b^2}}} = 1 \Rightarrow {a^2} = {6^2} = 36\)
Suy ra phương trình của (E) là
\(\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{9} = 1\).
Với những xe tải có chiều cao 2,8 m, chiều rộng của xe tải là 3 m, nếu xe chạy chính giữa hầm thì khoảng cách từ tâm xe tới mỗi bên xe khoảng 3 : 2 = 1,5 m, tương ứng với x = 1,5. Thay vào phương trình của elip để ta tìm ra độ cao y của điểm M (có hoành độ bằng 1,5 thuộc (E)) so với trục Ox.
\(\frac{{{x_M}^2}}{{36}} + \frac{{{y_M}^2}}{9} = 1\)
Suy ra: \({y_M} = 3.\sqrt {1 - \frac{{x_M^2}}{{36}}} = 3.\sqrt {1 - \frac{{{{1,5}^2}}}{{36}}} \approx 2,905 > 2,8\)
Kết luận: Ô tô tải có thể đi được qua hầm, tuy nhiên cần khuyến cáo ô tô phải đi vào chính giữa hầm.
Lời giải
Hướng dẫn giải
Xét đường elip như hình vẽ:
Theo đề bài: Độ dài trục lớn, độ dài trục nhỏ của quỹ đạo lần lượt là 768 800 km và 767 640 km. Nên ta có:
2a = 768 800 và 2b = 767 640
Do đó, a = 384 400 và b = 383 820.
Từ đó suy ra \[c = \sqrt {{a^2} - {b^2}} = \sqrt {{{384400}^2} - {{383820}^2}} \approx 21108\].
Vì vậy,
Khoảng cách lớn nhất từ tâm của Trái Đất đến Mặt Trăng là
a + c ≈ 384 400 + 21 108 = 405 508 (km)
Khoảng cách nhỏ nhất từ tâm của Trái Đất đến Mặt Trăng là:
a – c ≈ 384 400 – 21 108 = 363 292 (km).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Tìm hệ số, số hạng trong khai triển nhị thức Newton (có lời giải)
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)
15 câu Trắc nghiệm Toán 10 chân trời sáng tạo Không gian mẫu và biến cố có đáp án