Câu hỏi:

13/07/2024 5,173

Tìm  để hàm số fx=x33     khi x>1ax+b khi x1  có đạo hàm tại x=1  .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Điều kiện cần

Ta có f1=13;limx1+fx=limx1+x33=13  và limx1fx=limx1ax+b=a+b.

Để hàm số fx   có đạo hàm tại x=1   thì fx  liên tục tại x=1 .

Do đó limx1+fx=limx1fx=f1a+b=13.

Điều kiện đủ: f'1+=limx1+fxf1x1=limx1+x3313x1=limx1+x2+x+13=1.

f'1=limx1fxf1x1=limx1+fxf1x1=limx1ax+ba+bx1=limx1+axax1=a.

Để hàm số fx   có đạo hàm tại x=1  thì f'1+=f'1a=1b=23.

Vậy a=1;b=23  thỏa mãn yêu cầu của bài toán

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

       Đáp án C

Ta có: f'0=limx0fxf0x0=limx0x2+11x2=limx01x2+1+1=12.

Câu 2

Lời giải

Đáp án B

Hàm số y=fx=2x2+x+1x1  có tập xác định là D=\1 .

Ta có limx1fx=limx12x2+x+1x1=1=f1  nên hàm số liên tục tại x=1 .

Ta có y=fx=2x2+x+1x1=2x+1         khi x1       2x2+x+1x1 khi x>1,x1 nên

limx1fxf1x1=limx12x+11x+1=2 và limx1+fxf1x1=limx12x2+x+1x11x+1=limx12xx1=1.

Vậy không tồn tại limx1fxf1x1  . Do đó hàm số không có đạo hàm tại x=1 .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP