Câu hỏi:

19/09/2022 254

Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến A(n) đúng với mọi giá trị nguyên np với p là số nguyên dương ta sẽ tiến hành 2 bước

Bước 1 (bước cơ sở). Chứng minh rằng A(n) đúng khi n=1

Bước 2 (bước quy nạp). Với số nguyên dương tùy ý k, ta giả sử A(n) đúng khi n=k (theo giả thiết quy nạp). Ta sẽ chứng minh rằng A(n) đúng khi n=k+1

Hãy chọn câu trả lời đúng tương ứng với lí luận trên.

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C

Bước 1 sai, vì theo bài toán np nên ta phải chứng minh rằng A(n) đúng khi n=p.

Bước 2 sai, không thể “Với số nguyên dương tùy ý k” mà phải là “Với số nguyên dương kp”.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai dãy số un, (vn) được xác định như sau u1=3,v1=2  un+1=un2+2vn2vn=1=2un.vn với n2.Công thức tổng quát của hai dãy un và (vn)

Xem đáp án » 19/09/2022 2,985

Câu 2:

Với mọi n*, khẳng định nào sau đây sai?

Xem đáp án » 19/09/2022 1,349

Câu 3:

Chứng minh rằng số đường chéo của một đa giác lồi n cạnh n4 là nn32.

Xem đáp án » 12/07/2024 887

Câu 4:

Chứng minh rằng với mọi số nguyên dương n2 , ta có 1.22+2.33+3.44+...+n1n2=nn213n+212      (1)

Xem đáp án » 12/07/2024 638

Câu 5:

Chứng minh rằng với mọi số nguyên dương n, ta có 11.2.3+12.3.4+...+1nn+1n+2=nn+34n+1n+2     (1)

Xem đáp án » 12/07/2024 636

Câu 6:

Chứng minh rằng mọi n – giác lồi (n5) đều được chia thành hữu hạn ngũ giác lồi.

Xem đáp án » 12/07/2024 561

Câu 7:

Chứng minh rằng với mọi số tự nhiên n2, ta luôn có 2n+1>2n+3        (*)

Xem đáp án » 12/07/2024 519

Bình luận


Bình luận
Vietjack official store