Câu hỏi:

19/09/2022 345

Cho dãy số (un)  xác định bởi u1=cosα0<α<πun+1=1+un2,n1 . Số hạng thứ 2020 của dãy số đã cho là

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B

Do 0<α<π nên u2=1+cosα2=cos2α2=cosα2;u3=1+cosα22=cos2α2=cosα4

Vậy u=cosα2n1 với mọi n*. Ta sẽ chứng minh bằng quy nạp.

Với n=1 thì u1=cosα (đúng).

Giả sử với n=k* ta có uk=cosα2k1. Ta chứng minh uk+1=cosα2k1

Thật vậy uk+1=1+uk2=1+cosα2k12=cos2α2k=cosα2k 

Từ đó ta có u2020=cosα22019

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai dãy số un, (vn) được xác định như sau u1=3,v1=2  un+1=un2+2vn2vn=1=2un.vn với n2.Công thức tổng quát của hai dãy un và (vn)

Xem đáp án » 19/09/2022 3,028

Câu 2:

Với mọi n*, khẳng định nào sau đây sai?

Xem đáp án » 19/09/2022 1,381

Câu 3:

Chứng minh rằng số đường chéo của một đa giác lồi n cạnh n4 là nn32.

Xem đáp án » 12/07/2024 956

Câu 4:

Chứng minh rằng với mọi số nguyên dương n, ta có 11.2.3+12.3.4+...+1nn+1n+2=nn+34n+1n+2     (1)

Xem đáp án » 12/07/2024 727

Câu 5:

Chứng minh rằng với mọi số nguyên dương n2 , ta có 1.22+2.33+3.44+...+n1n2=nn213n+212      (1)

Xem đáp án » 12/07/2024 657

Câu 6:

Chứng minh rằng mọi n – giác lồi (n5) đều được chia thành hữu hạn ngũ giác lồi.

Xem đáp án » 12/07/2024 570

Câu 7:

Chứng minh rằng với mọi số tự nhiên n2, ta luôn có 2n+1>2n+3        (*)

Xem đáp án » 12/07/2024 526

Bình luận


Bình luận
Vietjack official store