Câu hỏi:

02/10/2022 281

Cho tam giác ABC có đường trung tuyến AM đồng thời là đường phân giác góc A. Chứng minh tam giác ABC là tam giác cân.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Vẽ đường cao MH của tam giác AMB và vẽ đường cao MK của tam giác AMC.

• Xét DAMH và DAMK có:

AHM^=AKM^=90°,

AM là cạnh chung,

HAM^=KAM^ (vì AM là tia phân giác của BAC^).

Do đó DAMH = DAMK (cạnh huyền – góc nhọn).

Suy ra MH = MK (hai cạnh tương ứng).                

• Xét DBMH và DCMK có:

BHM^=CKM^=90°,

MH = MK (chứng minh trên),

BM = CM (vì AM là trung tuyến của tam giác ABC).

Do đó DBMH = DCMK (cạnh huyền – cạnh góc vuông).

Suy ra B^=C^ (hai góc tương ứng).

Xét tam giác ABC có B^=C^ nên tam giác ABC cân tại A.

Vậy ABC là tam giác cân tại A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có ba trung tuyến AM, BN, CP đồng quy tại G. Chứng minh: GA+GB+GC=23AM+BN+CP.

Xem đáp án » 11/07/2024 2,620

Câu 2:

Cho tam giác ABC có hai trung tuyến AM và CN cắt nhau tại G

a) Biết AM = 12 cm, tính AG.

Xem đáp án » 11/07/2024 1,046

Câu 3:

Cho tam giác ABC có hai đường trung tuyến AM và BN cắt nhau tại G. Vẽ AH vuông góc với BC tại H. Cho biết HB = HM. Chứng minh:

a) ABH = AMH;

Xem đáp án » 11/07/2024 755

Câu 4:

c) Tìm x biết AG = 3x – 4, GM = x.

Xem đáp án » 02/10/2022 602

Câu 5:

b) AG=23AB.

Xem đáp án » 11/07/2024 539

Câu 6:

Cho tam giác ABC có trung tuyến AM và G là trọng tâm. Chứng minh:

a) SAMB = SAMC;

Xem đáp án » 02/10/2022 504

Câu 7:

c) SGAB = SGBC = SGAC.

Xem đáp án » 02/10/2022 504

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store