Câu hỏi:

30/10/2022 5,329

Cho lăng trụ đều ABC.DEF có cạnh đáy bằng a, chiều cao bằng 2a. Cosin của góc tạo bởi hai đường thẳng ACBF

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn đáp án A.

Cho lăng trụ đều ABC.DEF có cạnh đáy bằng a, chiều cao bằng 2a. Cosin của góc tạo bởi hai (ảnh 1)

Gọi M, N, K lần lượt là trung điểm các đoạn thẳng BC, CF, AB.

Khi đó MN//BFMK//ACAC,BF^=MN,MK^.

Xét tam giác MNK, ta có:

MN=12BF=12BC2+CF2=12a2+4a2=a52;MK=12AC=a2,CK=a32;NK=KC2+NC2=3a24+a2=a72.

Suy ra cosEMN^=ME2+MN2EN22ME.MN=a24+5a247a242.a2.a52=125.

Vậy cosAC,BF^=cosEMN^=510.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn đáp án D

Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai đường thẳng BA' và B'D' bằng A. 45 độ B. 90 độ (ảnh 1)

BD//B'D'  nên góc giữa hai đường thẳng BA' B'D' bằng góc giữa hai đường thẳng BA'BD.

Ta có ABCD.A'B'C'D' là hình lập phương nên A'BD là tam giác đều. Khi đó góc giữa hai đường thẳng BA' BD bằng ABD^=60o.

Lời giải

Chọn đáp án C

Cho tứ diện ABCD có AB =  CD = 2a. Gọi M, N lần lượt là trung điểm AD và BC. Biết MN = a căn bậc 2(3) (ảnh 1)

Gọi P là trung điểm AC, ta có PM//CD  PN//AB  suy ra AB,CD^=PM,PN^.

Dễ thấy PM=PN=a.  Xét PMN ta có:

cosMPN^=PM2+PN2MN22PM.PN=a2+a23a22.a.a=12MPN^=120o.

Suy ra AB,CD^=180o120o=60o.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP