Câu hỏi:

30/10/2022 400 Lưu

Cho tứ diện đều ABCD cạnh a. Gọi M là trung điểm của BC. Côsin của góc giữa hai đường thẳng ABDM bằng

A. 32.

B. 36.

C. 33.

D. 12

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án B

Cho tứ diện đều ABCD cạnh a. Gọi M là trung điểm của BC. Côsin của góc giữa hai đường thẳng (ảnh 1)

Gọi N là trung điểm của AC.

Khi đó AB//MN  nên DM,AB^=DM,MN^.

Dễ dàng tính được DM=DN=a32  và MN=a2.

Trong tam giác DMN, ta có:

cosDMN^=DM2+MN2DN22DM.MN=a242.a32.a2=36.

cosDMN^=36>0  nên cosDM,MN^=36.  Vậy cosDM,AB^=36.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của BC và AD, biết AB = CD = a, MN = a căn bậc 2(3)/2 (ảnh 1)

Gọi I là trung điểm của AC.

Ta có IM//ABIN//CDAB,CD^=IM,IN^.

Đặt MIN^=α.

Xét tam giác IMN có IM=AB2=a2,IN=CD2=a2,MN=a32.

Theo định lí côsin, ta có:

cosα=IM2+IN2MN22IM.IN=a22+a22a3222.a2.a2=12<0MIN^=120o.

Vậy AB,CD^=60o.

Lời giải

Chọn đáp án C

Cho tứ diện ABCD có AB =  CD = 2a. Gọi M, N lần lượt là trung điểm AD và BC. Biết MN = a căn bậc 2(3) (ảnh 1)

Gọi P là trung điểm AC, ta có PM//CD  PN//AB  suy ra AB,CD^=PM,PN^.

Dễ thấy PM=PN=a.  Xét PMN ta có:

cosMPN^=PM2+PN2MN22PM.PN=a2+a23a22.a.a=12MPN^=120o.

Suy ra AB,CD^=180o120o=60o.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP