Câu hỏi:

05/01/2023 7,280

Cho hàm số y=x33(m+1)x2+9xm . Tổng tất cả các giá trị của tham số m thỏa mãn hàm số đạt cực trị tại hai điểm  x1, x2  sao cho 3x12x2=m+6  

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Ta có: y'=3x26(m+1)x+9

Hàm số có hai điểm cực trị khi y'=0  có hai nghiệm phân biệt

Δ'=9(m+1)227>0(m+1)2>3(*).

Theo định lí Vi-ét ta có x1+x2=2(m+1)x1.x2=3 .

Từ x1+x2=2(m+1)3x12x2=m+6x1=m+2x2=m  thế vào x1.x2=3  ta được

m(m+2)=3m=1m=3 thỏa mãn (*).

Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có y'=03x26mx=0x=0x=2m.

Đồ thị (C) luôn có hai điểm cực trị với mọi m nguyên dương (vì m là số nguyên dương nên phương trình y'=0  luôn có hai nghiệm phân biệt).

Khi đó A0;4m22,B2m;4m3+4m22

AB=4m2+16m6=2m4m4+1.

AB:x02m0=y4m224m32m2x+y4m2+2=0.

Thế tọa độ C vào phương trình đường thẳng (AB), dễ thấy CAB .

dC,AB=2m2+44m2+24m4+1=2m234m4+1.

SABC=12.AB.dC,AB=412.2m.4m4+1.2m234m4+1=4

mm23=2m66m4+9m24=0

m212m24=0m=±1m=±2.

Do m nguyên dương nên ta nhận được m=1,m=2. Tổng là 3.

Chọn C.

Lời giải

Hướng dẫn giải

Ta có:y'=8x7+5m4x44m216x3=x38x4+5m4x4m216=x3.gx

·       Với gx=8x4+5m4x4m216. Ta xét các trường hợp sau:

-        Nếu m216=0m=±4 .

+ Khi m=4  ta có y'=8x7x=0  là điểm cực tiểu.

+ Khi m=4  ta có y'=x48x340x=0  không là điểm cực tiểu.

-        Nếu m2160m±4g00 .

Hàm số đạt cực tiểu tại điểm x=0

 Đạo hàm đổi dấu từ âm sang dương khi đi qua điểm x=0

limx0gx>0limx0+gx>0limx0gx>0

4m216>0m216<04<m<4m3;2;1;0;1;2;3.

Tổng hợp các trường hợp ta có: m3;2;1;0;1;2;3;4 .

Vậy có tám giá trị nguyên của m thỏa mãn yêu cầu.

Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP