Câu hỏi:

13/01/2023 969 Lưu

Cho tam giác đều ABC nội tiếp đường tròn tâm I đường kính AA', M là trung điểm của BC. Khi quay tam giác ABM cùng với nửa hình tròn đường kính AA' xung quanh đường thẳng AM, ta được khối nón và khối cầu có thể tích lần lượt là V1 và V2. Tỷ số V1V2 bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D

Gọi a là cạnh ABC đều, suy ra BM=a2;AM=a32;IA=a33.
Ta có V1V2=13πBM2.AM43.π.IA3=14.a22.a32a333=932.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B
Cho khối chóp đều S.ABCD có tất cả các cạnh đều bằng a căn bậc hai 3. Thể tích V của khối cầu ngoại tiếp hình chóp là (ảnh 1)

Vì S.ABCD là hình chóp đều nên SOABCD.

Ta có OD=12BD=12.a6=a62,

SO=SD2OD2=a62.

Vậy OS=OA=OD=OB=OC, nên O là tâm mặt cầu ngoại tiếp S.ABCD.                                          

Vậy thể tích khối cầu cần tìm là V=43π.SO3=πa36 (đvtt)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP