Cho hàm số là hàm số bậc 3. Đồ thị hàm số như hình vẽ dưới đây và .
Đồ thị hàm số (m là tham số thực) có bốn tiệm cận khi và chỉ khi
Cho hàm số là hàm số bậc 3. Đồ thị hàm số như hình vẽ dưới đây và .

Đồ thị hàm số (m là tham số thực) có bốn tiệm cận khi và chỉ khi
Câu hỏi trong đề: 194 câu Chuyên đề Toán 12 Bài 4: Tiệm cận có đáp án !!
Quảng cáo
Trả lời:

Hướng dẫn giải
Điều kiện .
Từ đồ thị hàm số , ta có bảng biến thiên hàm số là

- Nếu thì đồ thị hàm số không có đủ bốn tiệm cận.
- Nếu thì Đường thẳng là tiệm cận ngang của đồ thị hàm số.
Ta có phương trình có một nghiệm vì .
Suy ra đồ thị hàm số có bốn tiệm cận khi phương trình có ba nghiệm phân biệt khác .
Chọn B.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Điều kiện .
Vì nên đồ thị luôn có một đường tiệm cận ngang với mọi m.
Ta có .
Xét . Để đồ thị hàm số có đúng hai đường tiệm cận thì phải nhận x=1 hoặc x=2 là nghiệm hay .
· Với , ta có hàm số nên đồ thị có hai đường tiệm cận là (thỏa mãn).
· Với , ta có hàm số nên đồ thị có hai đường tiệm cận là (thỏa mãn).
Vậy nên tổng các giá trị m bằng -5.
Chọn A.
Lời giải
Hướng dẫn giải
Phương trình các đường tiệm cận là .
Do đó hai đường tiệm cận và hai trục tọa độ tạo thành hình chữ nhật diện tích bằng 1.2 = 2 (đvdt).
Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.