Câu hỏi:
28/01/2023 664
Cho hàm số có đồ thị . Gọi I là giao điểm của hai đường tiệm cận của . Biết tiếp tuyến của tại M cắt các đường tiệm cận đứng và tiệm cận ngang tại A và B sao cho đường tròn ngoại tiếp tam giác IAB có diện tích nhỏ nhất. Khi đó, diện tích lớn nhất của tam giác tạo bởi và hai trục tọa độ thuộc khoảng nào dưới đây?
Cho hàm số có đồ thị . Gọi I là giao điểm của hai đường tiệm cận của . Biết tiếp tuyến của tại M cắt các đường tiệm cận đứng và tiệm cận ngang tại A và B sao cho đường tròn ngoại tiếp tam giác IAB có diện tích nhỏ nhất. Khi đó, diện tích lớn nhất của tam giác tạo bởi và hai trục tọa độ thuộc khoảng nào dưới đây?
Câu hỏi trong đề: 194 câu Chuyên đề Toán 12 Bài 4: Tiệm cận có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Ta có .
Theo lý thuyết thì để diện tích đường tròn ngoại tiếp tam giác IAB nhỏ nhất thì AB nhỏ nhất. Khi đó hệ số góc của tiếp tuyến phải là .
Do nên .
Xét phương trình .
- Với Tiếp tuyến
.
Khi đó cắt Ox, Oy tại hai điểm và .
- Với tiếp tuyến
.
Khi đó cắt Ox, Oy tại hai điểm và .
Chọn C.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Điều kiện .
Vì nên đồ thị luôn có một đường tiệm cận ngang với mọi m.
Ta có .
Xét . Để đồ thị hàm số có đúng hai đường tiệm cận thì phải nhận x=1 hoặc x=2 là nghiệm hay .
· Với , ta có hàm số nên đồ thị có hai đường tiệm cận là (thỏa mãn).
· Với , ta có hàm số nên đồ thị có hai đường tiệm cận là (thỏa mãn).
Vậy nên tổng các giá trị m bằng -5.
Chọn A.
Lời giải
Hướng dẫn giải
Dựa vào đồ thị, ta suy ra tiệm cận đứng và tiệm cận ngang của đồ thị lần lượt là các đường thẳng .
Chọn D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.