Câu hỏi:

13/07/2024 1,976

Xác định một bất phương trình bậc nhất hai ẩn nhận nửa mặt phẳng bờ là đường thẳng d (miền không bị gạch) làm miền nghiệm (H.2.3).

 Xác định một bất phương trình bậc nhất hai ẩn nhận nửa mặt phẳng bờ là đường thẳng d (miền không bị gạch) làm miền nghiệm (H.2.3). (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Ta thấy đường thẳng d đi qua hai điểm (0; -2) và (4; 0).

Gọi phương trình đường thẳng d: y = ax + b (a ≠ 0).

Thay x = 0; y = -2 vào đường thẳng d ta có:

-2 = a . 0 + b

b = -2.

Thay x = 4; y = 0 vào đường thẳng d ta có:

0 = 4 . a + (-2)

2 = 4 . a

a = \[\frac{2}{4} = \frac{1}{2}\]

Do đó phương trình đường thẳng d: y = \[\frac{1}{2}\]x - 2

2-y = x 4

x - 2y = 4.

Chọn điểm O(0; 0) là điểm không thuộc đường thẳng d và thay vào biểu thức x - 2y ta được: 0 - 2 . 0 = 0 < 4.

Do đó bất phương trình nhận nửa mặt phẳng bờ là đường thẳng d (miền không bị gạch) làm miền nghiệm là x - 2y ≤ 4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Do x, y là các số nguyên âm và x + 2y ≥ -4 nên 0 > x > -4.

Với y ≤ -2 thì 2y ≤ -4, mà x là số nguyên âm nên x + 2y < -4 (loại).

Do đó 0 > y > -2 suy ra y = -1.

Ta có bảng sau:

x

-1

-2

-3

y

-1

-1

-1

x + 2y

-3 > -4 (thỏa mãn)

-4 = -4 (thỏa mãn)

-5 < -4 (loại)

Vậy miền nghiệm chứa hai điểm (x; y) {(-1; -1); (-2; -1)} với x, y là các số nguyên âm.

Lời giải

Lời giải:

Biểu diễn miền nghiệm của bất phương trình -3x + y < 4 trên mặt phẳng tọa độ.

Bước 1. Vẽ đường thẳng d: -3x + y = 4 trên mặt phẳng tọa độ Oxy như sau:

• Xác định hai điểm thuộc đường thẳng d: -3x + y = 4.

Ta có bảng sau:

x

0

1

y

4

7

Do đó đồ thị của đường thẳng d: -3x + y = 4 đi qua các điểm có tọa độ (0; 4) và (1; 7).

• Xác định 2 điểm đó trên hệ trục tọa độ Oxy và kẻ đường thẳng đi qua 2 điểm đó, ta thu được đường thẳng d: -3x + y = 4.

Bước 2. Ta chọn O(0; 0) là điểm không thuộc đường thẳng d: -3x + y = 4 và thay vào biểu thức -3x + y, ta có -3 . 0 + 0 = 0 < 4.

Do đó miền nghiệm của bất phương trình -3x + y < 4 là nửa mặt phẳng bờ d chứa gốc tọa độ và bỏ đi đường thẳng d (miền không được gạch).

 Cho bất phương trình bậc nhất hai ẩn 3x + y < 4.Biểu diễn miền nghiệm của bất phương trình đã cho trên mặt phẳng tọa độ. (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay