Câu hỏi:

11/07/2024 6,139

Cho tam giác OAB vuông cân, với OA = OB = a. Hãy xác định độ dài của các vectơ sau \(\overrightarrow {OA} + \overrightarrow {OB} ,\) \(\overrightarrow {OA} - \overrightarrow {OB} ,\) \(\overrightarrow {OA} + 2\overrightarrow {OB} ,\) \(2\overrightarrow {OA} - 3\overrightarrow {OB} .\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Cho tam giác OAB vuông cân, với OA = OB = a. Hãy xác định độ dài của các vectơ sau vectơ OA + vectơ OB , vectơ OA  - vectơ OB (ảnh 1)

Gọi C là điểm thoả mãn OACB là hình bình hành

Mà ∆OAB vuông cân có OA = OB nên OACB là hình vuông

OC = AB

Mà AB2 = OA2 + OB2 (định lí Pythagoras)

AB2 = a2 + a2 = 2a2

\( \Rightarrow OC = AB = a\sqrt 2 \)

+) Có: \(\overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow {OC} \) (quy tắc hình bình hành)

\[ \Rightarrow \left| {\overrightarrow {OA} + \overrightarrow {OB} } \right| = \left| {\overrightarrow {OC} } \right| = OC = a\sqrt 2 \]

+) Có: \(\overrightarrow {OA} - \overrightarrow {OB} = \overrightarrow {OA} + \overrightarrow {BO} = \overrightarrow {BO} + \overrightarrow {OA} = \overrightarrow {BA} \)

\( \Rightarrow \left| {\overrightarrow {OA} - \overrightarrow {OB} } \right| = \left| {\overrightarrow {BA} } \right| = a\sqrt 2 \)

+) Lấy điểm D sao cho \(\overrightarrow {OD} = 2\overrightarrow {OB} \) nên hai vectơ \(\overrightarrow {OD} \), \(\overrightarrow {OB} \) cùng hướng và OD = 2OB.

Có: \(\overrightarrow {OA} + 2\overrightarrow {OB} = \overrightarrow {OA} + \overrightarrow {OD} \)

Vẽ hình chữ nhật OAED, khi đó \(\overrightarrow {OA} + \overrightarrow {OD} = \overrightarrow {OE} \)

\[ \Rightarrow \left| {\overrightarrow {OA} + 2\overrightarrow {OB} } \right| = \left| {\overrightarrow {OE} } \right| = OE\]

Mà OE2 = OD2 + DE2 (định lí Pythagoras)

OE2 = (2OB)2 + OA2

OE2 = (2a)2 + a2 = 5a2

\[ \Rightarrow OE = a\sqrt 5 \]

Do đó \[\left| {\overrightarrow {OA} + 2\overrightarrow {OB} } \right| = a\sqrt 5 \]

+) Lấy điểm G sao cho \(\overrightarrow {OG} = 2\overrightarrow {OA} ,\overrightarrow {OH} = 3\overrightarrow {OB} \)

Khi đó: hai vectơ \(\overrightarrow {OG} \), \(\overrightarrow {OA} \) cùng hướng và OG = 2OA;

Và hai vectơ \(\overrightarrow {OH} \), \(\overrightarrow {OB} \) cùng hướng và OH = 3OB.

Có: \(2\overrightarrow {OA} - 3\overrightarrow {OB} = \overrightarrow {OG} - \overrightarrow {OH} \)

\( = \overrightarrow {OG} + \overrightarrow {HO} \) \( = \overrightarrow {HO} + \overrightarrow {OG} \)

\( = \overrightarrow {HG} \)

\( \Rightarrow \left| {2\overrightarrow {OA} - 3\overrightarrow {OB} } \right| = \left| {\overrightarrow {HG} } \right| = HG\)

Mà HG2 = OG2 + OH2 (định lí Pythagoras)

HG2 = (2OA)2 + (3OB)2

HG2 = (2a)2 + (3a)2

HG2 = 13a2

\( \Rightarrow HG = a\sqrt {13} \)

Do đó \(\left| {2\overrightarrow {OA} - 3\overrightarrow {OB} } \right| = a\sqrt {13} .\)

Vậy \[\left| {\overrightarrow {OA} + \overrightarrow {OB} } \right| = a\sqrt 2 ;\]\(\left| {\overrightarrow {OA} - \overrightarrow {OB} } \right| = a\sqrt 2 ;\)\[\left| {\overrightarrow {OA} + 2\overrightarrow {OB} } \right| = a\sqrt 5 \] và \(\left| {2\overrightarrow {OA} - 3\overrightarrow {OB} } \right| = a\sqrt {13} .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O. Chứng minh rằng ba điểm G, H, O cùng thuộc một đường thẳng.  (ảnh 1)

Vì G là trọng tâm tam giác ABC nên \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 3\overrightarrow {OG} .\]

Mà \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} \] (câu b)

Suy ra \(\overrightarrow {OH} = 3\overrightarrow {OG} \)

Khi đó \(\overrightarrow {OH} \) và \(\overrightarrow {OG} \) cùng phương, cùng hướng

O, H, G thẳng hàng.

Vậy ba điểm O, H, G thẳng hàng.

Lời giải

Lời giải

Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O. Chứng minh rằng vecto OA  + vecto OB  + vecto OC  = vecto OH (ảnh 1)

M là trung điểm của BC nên \(\overrightarrow {OB} + \overrightarrow {OC} = 2\overrightarrow {OM} \)

Mà \[\overrightarrow {AH} = 2\overrightarrow {OM} \] (câu a)

\[ \Rightarrow \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {AH} \]

\[ \Rightarrow \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OA} + \overrightarrow {AH} \]

\[ \Rightarrow \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} .\]

Vậy \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay