Câu hỏi:
11/07/2024 7,706Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O.
Gọi M là trung điểm của BC. Chứng minh rằng \[\overrightarrow {AH} = 2\overrightarrow {OM} .\]
Quảng cáo
Trả lời:
Lời giải
Kẻ đường kính AD. Hai điểm B, C thuộc đường tròn đường kính AD nên \(\widehat {ABD} = \widehat {ACD} = 90^\circ \)
Hay BD ⊥ AB, CD ⊥ AC
Lại có H là trực tâm ∆ABC nên BH ⊥ AC, CH ⊥ AB
BH /// CD và CH // BD
BHCD là hình bình hành (dấu hiệu nhận biết)
Hai đường chéo cắt nhau tại trung điểm của mỗi đường (tính chất hình bình hành)
Mà M là trung điểm của BC
M là trung điểm của HD
Mà O là trung điểm của AD
Khi đó OM là đường trung bình của ∆AHD
OM // AH và \(AH = 2.OM\) (tính chất đường trung bình)
Do đó hai vectơ \(\overrightarrow {AH} \) và \(\overrightarrow {OM} \) có:
+ Cùng phương, cùng hướng
+ Độ dài: \(\left| {\overrightarrow {AH} } \right| = 2\left| {\overrightarrow {OM} } \right|\)
\[ \Rightarrow \overrightarrow {AH} = 2\overrightarrow {OM} .\]
Vậy \[\overrightarrow {AH} = 2\overrightarrow {OM} .\]
Hot: Đề thi cuối kì 2 Toán, Văn, Anh.... file word có đáp án chi tiết lớp 1-12 form 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O.
Chứng minh rằng ba điểm G, H, O cùng thuộc một đường thẳng.
Câu 2:
Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O.
Chứng minh rằng \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} .\]
Câu 3:
Cho tam giác ABC.
Tìm điểm M sao cho \[\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 .\]
Câu 4:
Cho tam giác ABC.
Xác định điểm N thoả mãn \[4\overrightarrow {NA} - 2\overrightarrow {NB} + \overrightarrow {NC} = \overrightarrow 0 .\]
Câu 5:
Cho tam giác OAB vuông cân, với OA = OB = a. Hãy xác định độ dài của các vectơ sau \(\overrightarrow {OA} + \overrightarrow {OB} ,\) \(\overrightarrow {OA} - \overrightarrow {OB} ,\) \(\overrightarrow {OA} + 2\overrightarrow {OB} ,\) \(2\overrightarrow {OA} - 3\overrightarrow {OB} .\)
Câu 6:
Cho tam giác ABC đều với trọng tâm O. M là một điểm tuỳ ý nằm trong tam giác. Gọi D, E, F theo thứ tự là hình chiếu vuông góc của M trên BC, CA, AB.
Chứng minh rằng \(\overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} = \frac{3}{2}\overrightarrow {MO} .\)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
15 câu Trắc nghiệm Toán 10 Kết nối tri thức Quy tắc đếm có đáp án
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận