Câu hỏi:
11/07/2024 7,899Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O.
Gọi M là trung điểm của BC. Chứng minh rằng \[\overrightarrow {AH} = 2\overrightarrow {OM} .\]
Quảng cáo
Trả lời:
Lời giải
Kẻ đường kính AD. Hai điểm B, C thuộc đường tròn đường kính AD nên \(\widehat {ABD} = \widehat {ACD} = 90^\circ \)
Hay BD ⊥ AB, CD ⊥ AC
Lại có H là trực tâm ∆ABC nên BH ⊥ AC, CH ⊥ AB
BH /// CD và CH // BD
BHCD là hình bình hành (dấu hiệu nhận biết)
Hai đường chéo cắt nhau tại trung điểm của mỗi đường (tính chất hình bình hành)
Mà M là trung điểm của BC
M là trung điểm của HD
Mà O là trung điểm của AD
Khi đó OM là đường trung bình của ∆AHD
OM // AH và \(AH = 2.OM\) (tính chất đường trung bình)
Do đó hai vectơ \(\overrightarrow {AH} \) và \(\overrightarrow {OM} \) có:
+ Cùng phương, cùng hướng
+ Độ dài: \(\left| {\overrightarrow {AH} } \right| = 2\left| {\overrightarrow {OM} } \right|\)
\[ \Rightarrow \overrightarrow {AH} = 2\overrightarrow {OM} .\]
Vậy \[\overrightarrow {AH} = 2\overrightarrow {OM} .\]
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Vì G là trọng tâm tam giác ABC nên \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 3\overrightarrow {OG} .\]
Mà \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} \] (câu b)
Suy ra \(\overrightarrow {OH} = 3\overrightarrow {OG} \)
Khi đó \(\overrightarrow {OH} \) và \(\overrightarrow {OG} \) cùng phương, cùng hướng
O, H, G thẳng hàng.
Vậy ba điểm O, H, G thẳng hàng.
Lời giải
Lời giải
Vì
M là trung điểm của BC nên \(\overrightarrow {OB} + \overrightarrow {OC} = 2\overrightarrow {OM} \)
Mà \[\overrightarrow {AH} = 2\overrightarrow {OM} \] (câu a)
\[ \Rightarrow \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {AH} \]
\[ \Rightarrow \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OA} + \overrightarrow {AH} \]
\[ \Rightarrow \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} .\]
Vậy \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} .\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Tìm hệ số, số hạng trong khai triển nhị thức Newton (có lời giải)
50 câu trắc nghiệm Thống kê cơ bản (phần 1)