Câu hỏi:

11/07/2024 8,426

Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O.

Chứng minh rằng \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} .\]

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O. Chứng minh rằng vecto OA  + vecto OB  + vecto OC  = vecto OH (ảnh 1)

M là trung điểm của BC nên \(\overrightarrow {OB} + \overrightarrow {OC} = 2\overrightarrow {OM} \)

Mà \[\overrightarrow {AH} = 2\overrightarrow {OM} \] (câu a)

\[ \Rightarrow \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {AH} \]

\[ \Rightarrow \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OA} + \overrightarrow {AH} \]

\[ \Rightarrow \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} .\]

Vậy \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} .\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O.

Chứng minh rằng ba điểm G, H, O cùng thuộc một đường thẳng.

Xem đáp án » 11/07/2024 9,204

Câu 2:

Cho tam giác ABC.

Tìm điểm M sao cho \[\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 .\]

Xem đáp án » 11/07/2024 7,695

Câu 3:

Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O.

Gọi M là trung điểm của BC. Chứng minh rằng \[\overrightarrow {AH} = 2\overrightarrow {OM} .\]

Xem đáp án » 11/07/2024 7,163

Câu 4:

Cho tam giác ABC.

Xác định điểm N thoả mãn \[4\overrightarrow {NA} - 2\overrightarrow {NB} + \overrightarrow {NC} = \overrightarrow 0 .\]

Xem đáp án » 11/07/2024 6,961

Câu 5:

Cho tam giác OAB vuông cân, với OA = OB = a. Hãy xác định độ dài của các vectơ sau \(\overrightarrow {OA} + \overrightarrow {OB} ,\) \(\overrightarrow {OA} - \overrightarrow {OB} ,\) \(\overrightarrow {OA} + 2\overrightarrow {OB} ,\) \(2\overrightarrow {OA} - 3\overrightarrow {OB} .\)

Xem đáp án » 11/07/2024 5,859

Câu 6:

Cho tam giác ABC đều với trọng tâm O. M là một điểm tuỳ ý nằm trong tam giác. Gọi D, E, F theo thứ tự là hình chiếu vuông góc của M trên BC, CA, AB.

Chứng minh rằng \(\overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} = \frac{3}{2}\overrightarrow {MO} .\)

Xem đáp án » 11/07/2024 4,772

Bình luận


Bình luận