Câu hỏi:

11/07/2024 5,325

Cho tam giác ABC đều với trọng tâm O. M là một điểm tuỳ ý nằm trong tam giác. Gọi D, E, F theo thứ tự là hình chiếu vuông góc của M trên BC, CA, AB.

Chứng minh rằng \(\overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} = \frac{3}{2}\overrightarrow {MO} .\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Cho tam giác ABC đều với trọng tâm O. M là một điểm tuỳ ý nằm trong tam giác. Gọi D, E, F theo thứ tự là hình chiếu vuông góc của M trên BC, CA, AB.Chứng minh rằng vecto MD (ảnh 1)

Qua M,

kẻ các đường thẳng IJ // BC, HK // AC, PQ // AB.

Tam giác ABC đều nên \(\widehat {ABC} = \widehat {ACB} = 60^\circ \)

Mà PQ // AB nên \(\widehat {MQK} = \widehat {ABC} = 60^\circ ,\)

HK // AC nên \(\widehat {MKQ} = \widehat {ACB} = 60^\circ \)

Tam giác MQK có: \(\widehat {MQK} = \widehat {MKQ} = 60^\circ \) nên là tam giác đều.

Lại có MD là đường cao kẻ từ M nên MD đồng thời là đường trung tuyến

Do đó D là trung điểm của QK

\( \Rightarrow \overrightarrow {MQ} + \overrightarrow {MK} = 2\overrightarrow {MD} \)(1)

Chứng minh tương tự ta cũng có:

+) \(\overrightarrow {MH} + \overrightarrow {MI} = 2\overrightarrow {MF} \)(2)

+) \(\overrightarrow {MP} + \overrightarrow {MJ} = 2\overrightarrow {ME} \)(3)

Từ (1), (2) và (3) ta có:

\(\overrightarrow {MQ} + \overrightarrow {MK} + \overrightarrow {MH} + \overrightarrow {MI} + \overrightarrow {MP} + \overrightarrow {MJ} = 2\overrightarrow {MD} + 2\overrightarrow {MF} + 2\overrightarrow {ME} \)

\[ \Rightarrow 2\left( {\overrightarrow {MD} + \overrightarrow {MF} + \overrightarrow {ME} } \right) = \left( {\overrightarrow {MQ} + \overrightarrow {MI} } \right) + \left( {\overrightarrow {MK} + \overrightarrow {MJ} } \right) + \left( {\overrightarrow {MH} + \overrightarrow {MP} } \right)\]

Vì MI // BQ, MQ // BI nên tứ giác MIBQ là hình bình hành

\( \Rightarrow \overrightarrow {MI} + \overrightarrow {MQ} = \overrightarrow {MB} \)

Tương tự ta có \[\overrightarrow {MK} + \overrightarrow {MJ} = \overrightarrow {MC} ;\overrightarrow {MH} + \overrightarrow {MP} = \overrightarrow {MA} \]

Khi đó \[2\left( {\overrightarrow {MD} + \overrightarrow {MF} + \overrightarrow {ME} } \right) = \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MA} \]

\[ \Rightarrow \overrightarrow {MD} + \overrightarrow {MF} + \overrightarrow {ME} = \frac{1}{2}\left( {\overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MA} } \right)\]

Lại có O là trọng tâm của tam giác ABC nên \[\overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MA} = 3\overrightarrow {MO} \]

\[ \Rightarrow \overrightarrow {MD} + \overrightarrow {MF} + \overrightarrow {ME} = \frac{1}{2}.3\overrightarrow {MO} = \frac{3}{2}\overrightarrow {MO} .\]

Vậy \(\overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} = \frac{3}{2}\overrightarrow {MO} .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O. Chứng minh rằng ba điểm G, H, O cùng thuộc một đường thẳng.  (ảnh 1)

Vì G là trọng tâm tam giác ABC nên \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 3\overrightarrow {OG} .\]

Mà \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} \] (câu b)

Suy ra \(\overrightarrow {OH} = 3\overrightarrow {OG} \)

Khi đó \(\overrightarrow {OH} \) và \(\overrightarrow {OG} \) cùng phương, cùng hướng

O, H, G thẳng hàng.

Vậy ba điểm O, H, G thẳng hàng.

Lời giải

Lời giải

Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O. Chứng minh rằng vecto OA  + vecto OB  + vecto OC  = vecto OH (ảnh 1)

M là trung điểm của BC nên \(\overrightarrow {OB} + \overrightarrow {OC} = 2\overrightarrow {OM} \)

Mà \[\overrightarrow {AH} = 2\overrightarrow {OM} \] (câu a)

\[ \Rightarrow \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {AH} \]

\[ \Rightarrow \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OA} + \overrightarrow {AH} \]

\[ \Rightarrow \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} .\]

Vậy \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay