Câu hỏi:
12/07/2024 16,619Trong mặt phẳng toạ độ Oxy cho ba điểm A(–2; 1), B(1; 4) và C(5; −2).
Tìm toạ độ trực tâm H và tâm đường tròn ngoại tiếp I của tam giác ABC.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải
*Tìm tọa độ trực tâm H của tam giác ABC:
Vì H là trực tâm của tam giác ABC nên AH ⊥ BC và BH ⊥ AC
Hay \(\overrightarrow {AH} .\overrightarrow {BC} = 0\) và \(\overrightarrow {BH} .\overrightarrow {AC} = 0\)
Giả sử H(x; y) là tọa độ trực tâm tam giác ABC
Với A(–2; 1), B(1; 4), C(5; −2) và H(x; y) ta có:
• \(\overrightarrow {AH} \) = (x + 2; y – 1) và \(\overrightarrow {BC} \) = (4; –6)
\( \Rightarrow \overrightarrow {AH} .\overrightarrow {BC} \) = 4.(x + 2) – 6.(y – 1) = 0
4x – 6y = –14
2x – 3y = –7(1)
• \(\overrightarrow {BH} \) = (x – 1; y – 4) và \(\overrightarrow {AC} \) = (7; –3)
\( \Rightarrow \overrightarrow {BH} .\overrightarrow {AC} \) = 7.(x – 1) – 3.(y – 4) = 0
7x – 3y = –5(2)
Trừ vế theo vế (2) cho (1) ta có: 5x = 2
x = \(\frac{2}{5}\)
Thay x = \(\frac{2}{5}\) vào (1) ta được: 2.\(\frac{2}{5}\) – 3y = –7
3y = \(\frac{{39}}{5}\)
y = \(\frac{{13}}{5}\)
\(H\left( {\frac{2}{5};\frac{{13}}{5}} \right).\)
Vậy tọa độ trực tâm của tam giác ABC là \(H\left( {\frac{2}{5};\frac{{13}}{5}} \right).\)
* Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC:
Theo kết quả phần a) của Bài 4.15, trang 54, Sách Bài tập, Toán 10, tập một ta có:
\(\overrightarrow {AH} = 2\overrightarrow {IM} \) với M là trung điểm của BC.
Giả sử I(a; b) là tọa độ tâm đường tròn ngoại tiếp tam giác ABC
Với A(–2; 1), B(1; 4), C(5; −2), \(H\left( {\frac{2}{5};\frac{{13}}{5}} \right)\) và I(a; b) ta có:
• \(\overrightarrow {AH} = \left( {\frac{{12}}{5};\frac{8}{5}} \right)\)
• M là trung điểm của BC nên \(\left\{ \begin{array}{l}{x_M} = \frac{{1 + 5}}{2} = 3\\{y_M} = \frac{{4 + \left( { - 2} \right)}}{2} = 1\end{array} \right.\)
M(3; 1)
\( \Rightarrow \overrightarrow {IM} \) = (3 – a; 1 – b)
\( \Rightarrow 2\overrightarrow {IM} \) = (6 – 2a; 2 – 2b)
Ta có \(\overrightarrow {AH} = 2\overrightarrow {IM} \)
\( \Leftrightarrow \left\{ \begin{array}{l}\frac{{12}}{5} = 6 - 2a\\\frac{8}{5} = 2 - 2b\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}2a = \frac{{18}}{5}\\2b = \frac{2}{5}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}a = \frac{9}{5}\\b = \frac{1}{5}\end{array} \right.\) \( \Rightarrow I\left( {\frac{9}{5};\frac{1}{5}} \right)\)
Vậy tọa độ tâm đường tròn ngoại tiếp tam giác ABC là \(I\left( {\frac{9}{5};\frac{1}{5}} \right).\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình vuông ABCD với độ dài cạnh bằng a. Tích vô hướng \(\overrightarrow {AB} .\overrightarrow {AC} \) bằng:
Câu 2:
Cho tam giác ABC vuông tại A và AB = 3, AC = 4. Độ dài của vectơ \[\overrightarrow {CB} + \overrightarrow {AB} \] bằng
Câu 3:
Trong mặt phẳng toạ độ Oxy cho ba điểm A(–2; 1), B(1; 4) và C(5; −2).
Chứng minh rằng A, B, C là ba đỉnh của một tam giác. Tìm toạ độ trọng tâm G của tam giác ABC.
Câu 4:
Cho tam giác ABC đều các cạnh có độ dài bằng 1. Lấy M, N, P lần lượt thuộc các cạnh BC, CA, AB sao cho BM = 2MC, CN = 2NA và AM ⊥ NP. Tỉ số của \(\frac{{AP}}{{AB}}\) bằng
Câu 5:
Cho tam giác ABC đều, trọng tâm G, có độ dài các cạnh bằng 3. Độ dài của vectơ \(\overrightarrow {AG} \) bằng
Câu 6:
Gọi G là trọng tâm của tam giác ABC và M là trung điểm cạnh BC. Khẳng định nào sau đây là một khẳng định đúng?
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
23 câu Trắc nghiệm Toán 10 (có đáp án): Phương trình chứa căn
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận