Câu hỏi:

13/07/2024 1,425

Tính giới hạn sau: lim1n.cosnn2+1.  

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ÿ Nếu ta nhập 1n.cosnn2+1 , sau đó CALC như trên máy sẽ báo: MATH ERROR.

Hướng dẫn giải

Vận dụng định lí 1 nếu unvn  với mọi nlimvn=0  thì  limun=0.

Ta có đánh giá sau:1n.cosnn2+1<cosnn2+1<1n2+1 , ta chỉ cần ghi 1n2+1 vào máy tính là sẽ tính được.

Cách bấm máy:

Ÿ Nhập vào máy tính biểu thức sau:

    

Tính giới hạn sau: lim (-1)^n. cosn /n^2+1 (ảnh 1)

    

Ÿ Sau đó bấm CALC.

        

Tính giới hạn sau: lim (-1)^n. cosn /n^2+1 (ảnh 2)

Ÿ Nhập:x=9999999999 , sau đó bấm “=”, ta được kết quả:

        

Tính giới hạn sau: lim (-1)^n. cosn /n^2+1 (ảnh 3)

Kết quả: 1.1020 là một giá trị rất rất nhỏ gần bằng 0. Vậy  lim1n.cosnn2+1=0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh các dãy số un sau đây có giới hạn là 0.

un=1n2n+115n1.

Xem đáp án » 13/07/2024 2,111

Câu 2:

Cho dãy số un với  un=n3n.

 a) Chứng minh rằng un+1un23  với mọi n.

Xem đáp án » 13/07/2024 1,716

Câu 3:

Chứng minh rằng: lim1n+1=0.

Xem đáp án » 13/07/2024 1,678

Câu 4:

Xét các câu sau:

(1) Ta có  lim13n=0;

(2) Ta có lim1nk=0 , với k là số nguyên tùy ý.

Xem đáp án » 14/09/2022 1,177

Câu 5:

Dãy số  với un=1.cos5n3n  có giới hạn bằng

Xem đáp án » 14/09/2022 1,093

Câu 6:

Giới hạn limsinπn63n2+1  bằng 

Xem đáp án » 14/09/2022 999

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store