Câu hỏi:
16/09/2022 286d1: x – 2y – 1 = 0 và \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 1 - 2t}\\{y = 2 - t}\end{array}} \right.\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Xét d1: x – 2y – 1 = 0 và \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 1 - 2t}\\{y = 2 - t}\end{array}} \right.\)
Vectơ pháp tuyến của d1 là: \(\overrightarrow {{n_{{d_1}}}} = \left( {1; - 2} \right)\)
Vectơ chỉ phương của d2 là: \(\overrightarrow {{u_{{d_2}}}} = \left( { - 2; - 1} \right)\). Do đó, d2 có một vectơ pháp tuyến là: \(\overrightarrow {{n_{{d_2}}}} = \left( {1; - 2} \right)\)
Ta có: \(\overrightarrow {{n_{{d_1}}}} = \overrightarrow {{n_{{d_2}}}} \) nên d1 và d2 song song hoặc trùng nhau
Xét d1: x – 2y – 1 = 0 . Khi x = 3 thì y = 1, do đó, điểm (3; 1) thuộc đường thẳng d1.
Xét \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 1 - 2t}\\{y = 2 - t}\end{array}} \right.\) có: \(\left\{ {\begin{array}{*{20}{c}}{3 = 1 - 2t}\\{1 = 2 - t}\end{array}} \right. \Leftrightarrow \left\{ \begin{array}{l}t = - 1\\t = 1\end{array} \right.\) (không thể tồn tại), do đó, điểm (3; 1) không thuộc đường thẳng d2
Vậy d1 // d2.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 6:
Trong mặt phẳng Oxy, cho đường thẳng ∆: 2x + y – 5 = 0.
Viết phương trình đường thẳng d qua điểm A(3; 1) và song song với đường thẳng ∆.
Câu 7:
Trong mặt phẳng Oxy, cho hai điểm A(–3; 0), B(1; –2) và đường thẳng d: x + y – 1 = 0.
Chứng minh rằng hai điểm A và B nằm cùng phía so với đường thẳng d.
75 câu trắc nghiệm Vectơ nâng cao (P1)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
28 câu Trắc nghiệm Mệnh đề có đáp án
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
80 câu trắc nghiệm Vectơ cơ bản (P1)
5 câu Trắc nghiệm Phương sai và độ lệch chuẩn có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
50 câu trắc nghiệm Thống kê nâng cao (P1)
về câu hỏi!