Quảng cáo
Trả lời:
Hướng dẫn giải
Gọi φ là góc giữa hai đường thẳng d và k.
Từ giả thiết ta có\(\overrightarrow {{n_d}} = \left( {2;1} \right),\overrightarrow {{n_k}} = \left( {2;5} \right)\)
Do đó, theo công thức tính góc của hai đường thẳng thì:
\(\cos \varphi = \left| {\cos \left( {\overrightarrow {{n_d}} ,\overrightarrow {{n_k}} } \right)} \right| = \frac{{\left| {\overrightarrow {{n_d}} .\overrightarrow {{n_k}} } \right|}}{{\left| {\overrightarrow {{n_d}} } \right|\left| {\overrightarrow {{n_k}} } \right|}}\)\( = \frac{{\left| {2.2 + 1.5} \right|}}{{\sqrt {{2^2} + {1^2}} .\sqrt {{2^2} + {5^2}} }} = \frac{9}{{\sqrt {145} }}\)
Vì φ là góc giữa hai đường thẳng nên 0° ≤ φ ≤ 90°, hơn nữa cosφ ≠ 0 và cosφ ≠ 1 nên ta có: 0° < φ < 90°, suy ra tanφ > 0.
Lại có: 1 + tan2φ = \(\frac{1}{{{{\cos }^2}\varphi }}\).
Do đó, \({\tan ^2}\varphi = \frac{1}{{{{\cos }^2}\varphi }} - 1 = \frac{{145}}{{81}} - 1 = \frac{{64}}{{81}} \Rightarrow \tan \varphi = \frac{8}{9}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Do M thuộc Ox nên toạ độ của M có dạng M(m; 0).
Từ giả thiết ta có:
\(d\left( {M,\Delta } \right) = \frac{{\left| {3m + 0 - 3} \right|}}{{\sqrt {{3^2} + {1^2}} }} = \sqrt {10} \)
⇔ |3m – 3| = 10 (*)
TH1: 3m – 3 ≥ 0 hay m ≥ 1
Khi đó, ta có:
(*) ⇔ 3m – 3 = 10 ⇔ m = \(\frac{{13}}{3}\)(thỏa mãn)
TH2: 3m – 3 < 0 hay m < 1
Khi đó, ta có:
(*) ⇔ –3m + 3 = 10 ⇔ m = \( - \frac{7}{3}\) (thỏa mãn)
Vậy có hai điểm thoả mãn là \({M_1}\left( {\frac{{13}}{3};0} \right);{M_2}\left( { - \frac{7}{3};0} \right)\).
Lời giải
Hướng dẫn giải
Dựa vào phương trình đường thẳng d ta có:
x + y – 1 = 0
⇔ y = 1 – x
Do M thuộc đường thẳng d nên toạ độ của điểm M có dạng M(t; 1– t).
Chu vi tam giác ABM là: AB + MA + MB
Mà AB luôn không đổi nên chu vi tam giác ABM nhỏ nhất khi và chỉ khi MA + MB nhỏ nhất.
Lấy A’ đối xứng với A qua đường thẳng d. Khi đó ta có:
MA + MB = MA’ + MB ≥ A’B
Dấu bằng xảy ra khi M = A’B ∩ d
Gọi H là hình chiếu vuông góc của A lên d. Khi đó AH đi qua điểm A(–3;0) và nhận vectơ chỉ phương \(\overrightarrow {{u_d}} = \left( {1; - 1} \right)\) của đường thẳng d là vectơ pháp tuyến nên phương trình của AH là:
1(x + 3) – 1(y – 0) = 0
⇔ x – y + 3 = 0
Vậy toạ độ điểm H là nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y - 1 = 0}\\{x - y + 3 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x + y = 1}\\{x - y = - 3}\end{array} \Leftrightarrow \left\{ \begin{array}{l}x = - 1\\y = 2\end{array} \right.} \right.\)
Suy ra H(–1; 2). Mặt khác, H là trung điểm của AA’ nên ta có:
xH = (xA + xA’) : 2 ⇔ xA’ = 2xH – xA = 2.(–1) – (–3) = 1
yH = (yA + yA’) : 2 ⇔ yA’ = 2yH – yA = 2.2 – 0 = 4
Do đó, ta có A’(1; 4)
Ta có \[\overrightarrow {A'B} = \left( {0; - 6} \right)\] là một vectơ chỉ phương của đường thẳng A’B. Do đó A’B là đường thẳng đi qua đểm A’(1; 4) và nhận \(\overrightarrow n = \left( {1;0} \right)\) là một vectơ pháp tuyến. Phương trình của đường thẳng A’B là:
1(x – 1) + 0(y – 4) = 0
⇔ x – 1 = 0
Vậy toạ độ điểm M là nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y - 1 = 0}\\{x - 1 = 0}\end{array}} \right. \Leftrightarrow \left\{ \begin{array}{l}1 + y - 1 = 0\\x = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 0\end{array} \right.\)
Do đó ta có M(1; 0).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận