Câu hỏi:

13/07/2024 892

Chứng minh rằng phương trình  x5+2x3+15x2+14x+2=3x2+x+1có đúng năm nghiệm phân biệt.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Phương trình đã cho tương đương với x5+2x3+15x2+14x+2=3x2+x+12

x59x44x3+18x2+12x+1=01

Xét hàm số fx=59x44x3+18x2+12x+1  liên tục trên R

Ta có: f2=95<0,  f1=1>0,  f12=1932<0

f0=1>0,  f2=47,  f10=7921>0

Do đó phương trình f(x)  có ít nhất năm nghiệm thuộc các khoảng

2;  1,  1;  12,  12;  0,  0;  2,  2;  10

Mặt khác f(x)  là đa thức bậc năm nên có tối đa năm nghiệm.

Vậy phương trình đã cho có đúng năm nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét phương trình: x3+ax2+bx+c=01

Đặt: fx=x3+ax2+bx+c

Từ giả thiết 4a+c>8+2b8+4a2b+c>0a+b+c<11a+b+c<0f1<0

Do đó f2.f1<0 nên phương trình (1) có ít nhất một nghiệm trong 2;  1

Ta nhận thấy:

limxfx= f2>0 nên phương trình (1) có ít nhất một nghiệm α;  2

Tương tự: limx+fx=+ f1<0 nên phương trình (1) có ít nhất một nghiệm β1;  +

Như vậy phương trình đã cho có ít nhất 3 nghiệm thực phân biệt, mặt khác phương trình bậc 3 có tối đa 3 nghiệm.

Lời giải

a)  lim4n2+2n2n=lim4n2+2n4n24n2+2n+2n=lim2n2n1+12n+1

=lim11+12n+1=11+0+1=12.

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP