Câu hỏi:

13/07/2024 1,578

Cho đồ thị hàm số y=fx   xác định trên khoảng a;b  như hình vẽ.

Dựa vào hình vẽ hãy cho biết tại mỗi điểm   x1,x2,x3,x4.

a, Hàm số có liên tục không?

b, Hàm số có đạo hàm không?

Cho đồ thị hàm số   xác định trên khoảng   như hình vẽ. Dựa vào hình vẽ hãy cho biết tại mỗi điểm x1,x2,x3,x4   a, Hàm số có liên tục không? b, Hàm số có đạo hàm không? (ảnh 1)

 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

 

a, Hàm số gián đoạn tại các điểm x1,x3  vì đồ thị bị đứt tại các điểm đó. Hàm số liên tục tại x2,x4  vì đồ thị là đường liền nét khi đi qua các điểm đó.

b, Tại các điểm x1,x3  hàm số không có đạo hàm do hàm số gián đoạn tại các điểm x1,x3.

Hàm số không có đạo hàm tại x2  vì đồ thị bị gãy (không có tiếp tuyến tại đó).

Hàm số có đạo hàm tại x4  và  vì tạif'x4=0  đồ thị hàm số có tiếp tuyến và tiếp tuyến song song với trục hoành (hệ số góc của tiếp tuyến bằng 0).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

       Đáp án C

Ta có: f'0=limx0fxf0x0=limx0x2+11x2=limx01x2+1+1=12.

Câu 2

Cho hàm số y=fx=2x2+x+1x1 . Khẳng định nào sau đây đúng?

Lời giải

Đáp án B

Hàm số y=fx=2x2+x+1x1  có tập xác định là D=\1 .

Ta có limx1fx=limx12x2+x+1x1=1=f1  nên hàm số liên tục tại x=1 .

Ta có y=fx=2x2+x+1x1=2x+1         khi x1       2x2+x+1x1 khi x>1,x1 nên

limx1fxf1x1=limx12x+11x+1=2 và limx1+fxf1x1=limx12x2+x+1x11x+1=limx12xx1=1.

Vậy không tồn tại limx1fxf1x1  . Do đó hàm số không có đạo hàm tại x=1 .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Đạo hàm của hàm số y=x2x  tại điểm x0  

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay