Câu hỏi:

19/08/2025 1,885 Lưu

Cho đồ thị hàm số y=fx   xác định trên khoảng a;b  như hình vẽ.

Dựa vào hình vẽ hãy cho biết tại mỗi điểm   x1,x2,x3,x4.

a, Hàm số có liên tục không?

b, Hàm số có đạo hàm không?

Cho đồ thị hàm số   xác định trên khoảng   như hình vẽ. Dựa vào hình vẽ hãy cho biết tại mỗi điểm x1,x2,x3,x4   a, Hàm số có liên tục không? b, Hàm số có đạo hàm không? (ảnh 1)

 

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

 

a, Hàm số gián đoạn tại các điểm x1,x3  vì đồ thị bị đứt tại các điểm đó. Hàm số liên tục tại x2,x4  vì đồ thị là đường liền nét khi đi qua các điểm đó.

b, Tại các điểm x1,x3  hàm số không có đạo hàm do hàm số gián đoạn tại các điểm x1,x3.

Hàm số không có đạo hàm tại x2  vì đồ thị bị gãy (không có tiếp tuyến tại đó).

Hàm số có đạo hàm tại x4  và  vì tạif'x4=0  đồ thị hàm số có tiếp tuyến và tiếp tuyến song song với trục hoành (hệ số góc của tiếp tuyến bằng 0).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

       Đáp án C

Ta có: f'0=limx0fxf0x0=limx0x2+11x2=limx01x2+1+1=12.

Lời giải

Giả sử Δx  là số gia của đối số x .

Ta có  Δy=fx+Δxfx=x+Δxx+Δx1xx1=Δxx+Δx1x1

ΔyΔx=ΔxΔx.x+Δx1x1=1x+Δx1x1.

limΔx0ΔyΔx=limΔx01x+Δx1x1=1x12

Vậy f'x=1x12  .

Câu 3

A. Hàm số f(x) liên tục và có đạo hàm tại x=-1.

B. Hàm số f(x) liên tục tại x=-1 nhưng không có đạo hàm tại x=-1  .

C. Hàm số f(x) không liên tục tại x=-1.

D. Hàm số  f(x) có tập xác định là R.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. f'x0=limΔx0Δx2Δx.

B.  f'x0=limΔx0Δx2Δxx02+x0.

C. f'x0=limΔx02x0Δx+Δx2Δx.
D. f'x0=limΔx0Δx+2x01

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP