Câu hỏi:

21/09/2022 416

Cho tứ diện ABCD, điểm M thuộc đoạn AC. Mặt phẳng α qua M song song với ABAD. Thiết diện của α với tứ diện ABCD là hình gì?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Cho tứ diện ABCD, điểm M thuộc đoạn AC. Mặt phẳng (anpha) qua M song song với AB và AD. (ảnh 1)

α và ABC M chung, αsong song với AB, ABABC

αABC=Mx, Mx // ABgọi MxBC=N.

α và  có M chung, α song song với AD, ADACD

αACD=My, My // AD và MyCD=P.

Ta có αABC=MN; αACD=MP; αBCD=NP.

Thiết diện của αvới tứ diện ABCD là tam giác MNP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Cho hình chóp S.ABCD, gọi M là trung điểm AB, mặt phẳng anpha qua M song song với SB và AD, (ảnh 1)

α song song với SB nên α cắt SABtheo giao tuyến MN với N là trung điểm SA.

α song song với AD nên α cắt ABCDSAD theo giao tuyến MQNP với P, Q là trung điểm của SD và MQ // AD.

Ta được thiết diện là hình thang MNPQ.

Câu 2

Cho tứ diện ABCD, điểm G là trọng tâm tam giác BCD. Mặt phẳng α qua G, song song với AB CD. α cắt trung tuyến AM của tam giác ACD tại K. Chọn khẳng định đúng.

Lời giải

Đáp án B

Cho tứ diện ABCD, điểm G là trọng tâm tam giác BCD. Mặt phẳng   qua G, song song với AB và CD. (ảnh 1)

α qua G, song song với CD αBCD=HI (giao tuyến đi qua G và song song CD, HBC, ICD).

Tương tự ta được αABD=IJ sao cho IJ // AB.

αACD=JNsao cho JN // CD.

αABC=HN.

Vậy α là HNJI

G là trọng tâm tam giác BCDIG // CDnên BGBM=BIBC=23.

Mặt khác IJ song song AB nên BIBC=AJAD=23.

Lại có JK song song DM (vì KAM, MCD) nên AKAM=AJAD=23.

Vậy AK=23AM.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I là trung điểm SA. Thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng IBC

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay