Câu hỏi:
02/10/2022 398Cho tam giác ABC có M là điểm đồng quy của ba đường phân giác. Qua M vẽ đường thẳng song song với BC và cắt AB, AC lần lượt tại N và P. Chứng minh rằng NP = BN + CP.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
• Ta có: MN // BC (giả thiết) do đó (hai góc so le trong).
Vì BM là phân giác của góc ABC nên .
Suy ra nên tam giác BNM cân tại N.
Do đó BN = NM.
• Ta có: MP // BC (giả thiết) do đó (hai góc so le trong).
Vì CM là phân giác của góc ACB nên .
Suy ra nên tam giác CMP cân tại P.
Do đó PM = PC.
Ta có: NP = MN + MP = BN + CP.
Vậy NP = BN + CP.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC cân tại A, hai đường cao BE và CF cắt nhau tại H. Chứng minh AH là đường trung trực của BC.
Câu 3:
Cho tam giác ABC có AB > AC. Trên tia đối của tia BC lấy điểm M sao cho BM = BA. Trên tia đối của tia CB lấy điểm N sao cho CN = CA.
a) Hãy so sánh các góc và .
Câu 4:
Cho hai đoạn thẳng AB và CD cắt nhau tại O. Tìm điểm M sao cho: MA + MB + MC + MD nhỏ nhất.
Câu 5:
Cho tam giác ABC có ba đường phân giác AD, BE, CF đồng quy tại I. Vẽ IH vuông góc với BC tại H. Chứng minh rằng
Câu 6:
Cho tam giác ABC có M là giao điểm của hai phân giác của góc B và góc C. Cho biết . Tính số đo các góc và .
Câu 7:
Cho tam giác ABC có . Hai đường phân giác của góc B và C cắt nhau tại O.
a) Tính số đo góc A
về câu hỏi!