Câu hỏi:
02/01/2023 1,894Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Vận tốc \[v\left( t \right)\] chính là nguyên hàm của gia tốc \[a\left( t \right)\] nên ta có:
\[v\left( t \right) = \int {a\left( t \right)dt} = \int {\left( { - \frac{1}{{24}}{t^3} + \frac{5}{{16}}{t^2}} \right)dt} = - \frac{1}{{96}}{t^4} + \frac{5}{{48}}{t^3} + C\]
Tại thời điểm ban đầu \[\left( {t = 0} \right)\] thì vận động viên ở tại vị trí xuất phát nên vận tốc lúc đó là: \[{v_0} = 0 \Rightarrow v\left( 0 \right) = 0 \Leftrightarrow - \frac{1}{{96}}{.0^4} + \frac{5}{{48}}{.0^3} + C = 0 \Leftrightarrow C = 0\].
Vậy công thức vận tốc là \[v\left( t \right) = - \frac{1}{{96}}{t^4} + \frac{5}{{48}}{t^3}\]
Vận tốc của vận động viên tại giây thứ 5 là \[v\left( 5 \right) = 6,51\;m/s\].
Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!