Câu hỏi:

02/01/2023 9,219

Một nhà khoa học tự chế tên lửa và phóng tên lửa từ mặt đất với vận tốc ban đầu là 20 m/s. Giả sử bỏ qua sức cản của gió, tên lửa chỉ chịu tác động của trọng lực. Hỏi sau 2s thì tên lửa đạt đến tốc độ là bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Xem như tại thời điểm \[{t_0} = 0\] thì nhà khoa học phóng tên lửa với vận tốc đầu 20 m/s. Ta có \[s\left( 0 \right) = 0\] và \[v\left( 0 \right) = 20\].

Vì tên lửa chuyển động thẳng đứng nên gia tốc trọng trường tại mọi thời điểm t là \[{s^n}\left( t \right) = - 9,8\;m/{s^2}\].

Nguyên hàm của gia tốc là vận tốc nên ta có vận tốc của tên lửa tại thời điểm t là \[v\left( t \right) = \int { - 9,8dt} = - 9,8t + {C_1}\].

Do \[v\left( 0 \right) = 20\] nên \[ - 9,8t + {C_1} = 20 \Leftrightarrow {C_1} = 20 \Rightarrow v\left( t \right) = - 9,8t + 20\].

Vậy vận tốc của tên lửa sau 2s là \[v\left( 2 \right) = - 9,8.2 + 20 = 0,4\left( {m/s} \right)\].

Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Phân tích \[f\left( x \right) = \frac{{2x + 1}}{{{x^4} + 2{x^3} + {x^2}}} = \frac{{2x + 1}}{{{x^2}{{\left( {x + 1} \right)}^2}}} = \frac{{2x + 1}}{{{{\left( {{x^2} + x} \right)}^2}}}\]

Khi đó \[F\left( x \right) = \int {\frac{{2x + 1}}{{{{\left( {{x^2} + x} \right)}^2}}}dx} = \int {\frac{1}{{{{\left( {{x^2} + x} \right)}^2}}}d\left( {{x^2} + x} \right)} = - \frac{1}{{{x^2} + x}} + C\].

Mặt khác \[F\left( 1 \right) = \frac{1}{2} \Rightarrow - \frac{1}{2} + C = \frac{1}{2} \Rightarrow C = 1\].

Vậy \[F\left( x \right) = - \frac{1}{{{x^2} + x}} + 1 = - \frac{1}{{x\left( {x + 1} \right)}} + 1 = - \left( {\frac{1}{x} - \frac{1}{{x + 1}}} \right) + 1\].

Do đó \[\begin{array}{l}S = F\left( 1 \right) + F\left( 2 \right) + F\left( 3 \right) + ... + F\left( {2019} \right) = - \left( {1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + ... + \frac{1}{{2019}} - \frac{1}{{2020}}} \right) + 2019\\\;\;\; = - \left( {1 - \frac{1}{{2020}}} \right) + 2019 = 2018 + \frac{1}{{2020}} = 2018\frac{1}{{2020}}\end{array}\]

Chọn C.

Lời giải

Hướng dẫn giải

\[f\left( x \right) = \int {f'\left( x \right)dx} = \int {\frac{2}{{{x^2} - 1}}dx} = \int {\left( {\frac{1}{{x - 1}} - \frac{1}{{x + 1}}} \right)dx} = \ln \left| {\frac{{x - 1}}{{x + 1}}} \right| + C\]

Hay \[f\left( x \right) = \ln \left| {\frac{{x - 1}}{{x + 1}}} \right| + C = \left\{ \begin{array}{l}\ln \left( {\frac{{x - 1}}{{x + 1}}} \right) + {C_1}\;khi\;x > 1\\\ln \frac{{1 - x}}{{1 + x}} + {C_2}\;khi\; - 1 < x < 1\\\ln \left( {\frac{{x - 1}}{{x + 1}}} \right) + {C_3}\;khi\;x < - 1\end{array} \right.\]

Theo bài ra, ta có: \[\left\{ \begin{array}{l}f\left( { - 3} \right) + f\left( 3 \right) = 2\ln 2\\f\left( { - \frac{1}{2}} \right) + f\left( {\frac{1}{2}} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{C_1} + {C_3} = 2\ln 2\\{C_2} = 0\end{array} \right.\]

Do đó \[f\left( { - 2} \right) + f\left( 0 \right) + f\left( 4 \right) = \ln 3 + {C_3} + {C_2} + \ln \frac{3}{5} + {C_1} = 2\ln 2 + 2\ln 3 - \ln 5\].

Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP