Một nhà khoa học tự chế tên lửa và phóng tên lửa từ mặt đất với vận tốc ban đầu là 20 m/s. Giả sử bỏ qua sức cản của gió, tên lửa chỉ chịu tác động của trọng lực. Hỏi sau 2s thì tên lửa đạt đến tốc độ là bao nhiêu?
                                    
                                                                                                                        Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    Hướng dẫn giải
Xem như tại thời điểm \[{t_0} = 0\] thì nhà khoa học phóng tên lửa với vận tốc đầu 20 m/s. Ta có \[s\left( 0 \right) = 0\] và \[v\left( 0 \right) = 20\].
Vì tên lửa chuyển động thẳng đứng nên gia tốc trọng trường tại mọi thời điểm t là \[{s^n}\left( t \right) = - 9,8\;m/{s^2}\].
Nguyên hàm của gia tốc là vận tốc nên ta có vận tốc của tên lửa tại thời điểm t là \[v\left( t \right) = \int { - 9,8dt} = - 9,8t + {C_1}\].
Do \[v\left( 0 \right) = 20\] nên \[ - 9,8t + {C_1} = 20 \Leftrightarrow {C_1} = 20 \Rightarrow v\left( t \right) = - 9,8t + 20\].
Vậy vận tốc của tên lửa sau 2s là \[v\left( 2 \right) = - 9,8.2 + 20 = 0,4\left( {m/s} \right)\].
Chọn B.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Phân tích \[f\left( x \right) = \frac{{2x + 1}}{{{x^4} + 2{x^3} + {x^2}}} = \frac{{2x + 1}}{{{x^2}{{\left( {x + 1} \right)}^2}}} = \frac{{2x + 1}}{{{{\left( {{x^2} + x} \right)}^2}}}\]
Khi đó \[F\left( x \right) = \int {\frac{{2x + 1}}{{{{\left( {{x^2} + x} \right)}^2}}}dx} = \int {\frac{1}{{{{\left( {{x^2} + x} \right)}^2}}}d\left( {{x^2} + x} \right)} = - \frac{1}{{{x^2} + x}} + C\].
Mặt khác \[F\left( 1 \right) = \frac{1}{2} \Rightarrow - \frac{1}{2} + C = \frac{1}{2} \Rightarrow C = 1\].
Vậy \[F\left( x \right) = - \frac{1}{{{x^2} + x}} + 1 = - \frac{1}{{x\left( {x + 1} \right)}} + 1 = - \left( {\frac{1}{x} - \frac{1}{{x + 1}}} \right) + 1\].
Do đó \[\begin{array}{l}S = F\left( 1 \right) + F\left( 2 \right) + F\left( 3 \right) + ... + F\left( {2019} \right) = - \left( {1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + ... + \frac{1}{{2019}} - \frac{1}{{2020}}} \right) + 2019\\\;\;\; = - \left( {1 - \frac{1}{{2020}}} \right) + 2019 = 2018 + \frac{1}{{2020}} = 2018\frac{1}{{2020}}\end{array}\]
Chọn C.
Câu 2
Lời giải
Hướng dẫn giải
\[f\left( x \right) = \int {f'\left( x \right)dx} = \int {\frac{2}{{{x^2} - 1}}dx} = \int {\left( {\frac{1}{{x - 1}} - \frac{1}{{x + 1}}} \right)dx} = \ln \left| {\frac{{x - 1}}{{x + 1}}} \right| + C\]
Hay \[f\left( x \right) = \ln \left| {\frac{{x - 1}}{{x + 1}}} \right| + C = \left\{ \begin{array}{l}\ln \left( {\frac{{x - 1}}{{x + 1}}} \right) + {C_1}\;khi\;x > 1\\\ln \frac{{1 - x}}{{1 + x}} + {C_2}\;khi\; - 1 < x < 1\\\ln \left( {\frac{{x - 1}}{{x + 1}}} \right) + {C_3}\;khi\;x < - 1\end{array} \right.\]
Theo bài ra, ta có: \[\left\{ \begin{array}{l}f\left( { - 3} \right) + f\left( 3 \right) = 2\ln 2\\f\left( { - \frac{1}{2}} \right) + f\left( {\frac{1}{2}} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{C_1} + {C_3} = 2\ln 2\\{C_2} = 0\end{array} \right.\]
Do đó \[f\left( { - 2} \right) + f\left( 0 \right) + f\left( 4 \right) = \ln 3 + {C_3} + {C_2} + \ln \frac{3}{5} + {C_1} = 2\ln 2 + 2\ln 3 - \ln 5\].
Chọn C.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
 Nhắn tin Zalo
 Nhắn tin Zalo