Câu hỏi:

02/01/2023 8,913

Cho hàm số \[y = f\left( x \right)\] có đạo hàm liên tục trên đoạn \[\left[ { - 2;1} \right]\] thỏa mãn \[f\left( 0 \right) = 3\] và \[{\left( {f\left( x \right)} \right)^2}.f'\left( x \right) = 3{x^2} + 4x + 2\]. Giá trị lớn nhất của hàm số \[y = f\left( x \right)\] trên đoạn \[\left[ { - 2;1} \right]\] là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Ta có: \[{\left( {f\left( x \right)} \right)^2}.f'\left( x \right) = 3{x^2} + 4x + 2\;\;\;\;\;\;\left( * \right)\]

Lấy nguyên hàm hai vế của đẳng thức (*) ta được:

\[\int {{{\left( {f\left( x \right)} \right)}^2}.f'\left( x \right)dx} = \int {\left( {3{x^2} + 4x + 2} \right)dx} \Leftrightarrow \frac{1}{3}{f^3}\left( x \right) = {x^3} + 2{x^2} + 2x + C \Leftrightarrow {f^3}\left( x \right) = 3{x^3} + 6{x^2} + 6x + 3C\]

Theo giả thiết, ta có \[f\left( 0 \right) = 3\] nên

\[{\left( {f\left( 0 \right)} \right)^3} = 3\left( {{0^3} + {{2.0}^2} + 2.0 + C} \right) \Leftrightarrow 27 = 3C \Leftrightarrow C = 9 \Rightarrow {f^3}\left( x \right) = 3{x^3} + 6{x^2} + 6x + 27\]

Ta tìm giá trị lớn nhất của hàm số \[g\left( x \right) = 3{x^3} + 6{x^2} + 6x + 27\] trên đoạn \[\left[ { - 2;1} \right]\].

Ta có \[g'\left( x \right) = 9{x^2} + 12x + 6 > 0,\forall x \in \left[ { - 2;1} \right]\] nên đồng biến trên đoạn \[\left[ { - 2;1} \right]\].

Vậy \[\mathop {\max f\left( x \right)}\limits_{\left[ { - 2;1} \right]} = \sqrt[3]{{\mathop {\max g\left( x \right)}\limits_{\left[ { - 2;1} \right]} }} = \sqrt[3]{{42}}\].

Chọn C.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right) = \frac{{2x + 1}}{{{x^4} + 2{x^3} + {x^2}}}\] trên khoảng \[\left( {0; + \infty } \right)\] và \[F\left( 1 \right) = \frac{1}{2}\]. Tổng \[S = F\left( 1 \right) + F\left( 2 \right) + F\left( 3 \right) + ... + F\left( {2019} \right)\] là

Xem đáp án » 02/01/2023 18,674

Câu 2:

Cho hàm số \[f\left( x \right)\] xác định trên \[\mathbb{R}\backslash \left\{ { - 1;1} \right\}\], thỏa mãn \[f'\left( x \right) = \frac{2}{{{x^2} - 1}};\;f\left( { - 3} \right) + f\left( 3 \right) = 2\ln 2\] và \[f\left( { - \frac{1}{2}} \right) + f\left( {\frac{1}{2}} \right) = 0\]. Giá trị của biểu thức \[P = f\left( { - 2} \right) + f\left( 0 \right) + f\left( 4 \right)\] là:

Xem đáp án » 01/01/2023 10,343

Câu 3:

Một vận động viên điền kinh chạy với gia tốc \[a\left( t \right) = - \frac{1}{{24}}{t^3} + \frac{5}{{16}}{t^2}\left( {m/{s^2}} \right)\], trong đó t là khoảng thời gian tính từ lúc xuất phát. Hỏi vào thời điểm 5 (s) sau khi xuất phát thì vận tốc của vận động viên là bao nhiêu?

Xem đáp án » 02/01/2023 9,505

Câu 4:

Cho hàm số \[f\left( x \right)\] xác định trên \[\mathbb{R}\backslash \left\{ {\frac{1}{2}} \right\}\] thỏa mãn \[f'\left( x \right) = \frac{2}{{2x - 1}};\;f\left( 0 \right) = 1\] và \[f\left( 1 \right) = 2\]. Giá trị của biểu thức \[P = f\left( { - 1} \right) + f\left( 3 \right)\] là:

Xem đáp án » 01/01/2023 9,329

Câu 5:

Một nhà khoa học tự chế tên lửa và phóng tên lửa từ mặt đất với vận tốc ban đầu là 20 m/s. Giả sử bỏ qua sức cản của gió, tên lửa chỉ chịu tác động của trọng lực. Hỏi sau 2s thì tên lửa đạt đến tốc độ là bao nhiêu?

Xem đáp án » 02/01/2023 8,652

Câu 6:

Nguyên hàm của hàm số \[f\left( x \right) = \frac{{3{x^2} + 3x + 3}}{{{x^3} - 3x + 2}}\] là:

Xem đáp án » 01/01/2023 8,597
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay