Câu hỏi:
02/01/2023 1,055Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đặt \[u = \sqrt {x + 1} \Rightarrow {u^2} = x + 1\]. Suy ra \[x = {u^2} - 1\] và \[dx = 2udu\].
Khi đó \[R = \int {\frac{{2u}}{{\left( {{u^2} - 1} \right)u}}du} = \int {\frac{2}{{{u^2} - 1}}du} = \int {\left( {\frac{1}{{u - 1}} - \frac{1}{{u + 1}}} \right)du} = \ln \left| {\frac{{u - 1}}{{u + 1}}} \right| + C\].
Vậy \[R = \ln \left| {\frac{{\sqrt {x + 1} - 1}}{{\sqrt {x + 1} + 1}}} \right| + C\]
Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!