Câu hỏi:
02/01/2023 3,100Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đặt \[u = 1 + \sqrt {1 + \ln x} \Rightarrow {\left( {u - 1} \right)^2} = 1 + \ln x \Leftrightarrow \ln x = {u^2} - 2u \Rightarrow \frac{{dx}}{x} = \left( {2u - 2} \right)du\].
Khi đó \[\begin{array}{l}V = \int {\frac{{{{\ln }^2}x}}{{x\left( {1 + \sqrt {\ln x + 1} } \right)}}dx} = \int {\frac{{{{\left( {{u^2} - 2u} \right)}^2}}}{u}.\left( {2u - 2} \right)du} \\ = 2\int {\left( {{u^4} - 5{u^3} + 8{u^2} - 4u} \right)du} = \frac{2}{5}{u^5} - \frac{5}{2}{u^4} + \frac{{16}}{3}{u^3} - 4{u^2} + C\end{array}\]
Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!