Câu hỏi:
02/01/2023 3,196Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Ta có: \[f\left( x \right).f'\left( x \right) = \left( {2x + 1} \right)\sqrt {1 + {f^2}\left( x \right)} \Leftrightarrow \frac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }} = 2x + 1\].
Suy ra \[\int {\frac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }}dx} = \int {\left( {2x + 1} \right)dx} \Leftrightarrow \int {\frac{{d\left( {1 + {f^2}\left( x \right)} \right)}}{{2\sqrt {1 + {f^2}\left( x \right)} }}} = \int {\left( {2x + 1} \right)dx} \Leftrightarrow \sqrt {1 + {f^2}\left( x \right)} = {x^2} + x + C\]
Theo giả thiết \[f\left( 0 \right) = 2\sqrt 2 \], suy ra \[\sqrt {1 + {{\left( {2\sqrt 2 } \right)}^2}} = C \Leftrightarrow C = 3\]
Với \[C = 3\] thì \[\sqrt {1 + {f^2}\left( x \right)} = {x^2} + x + 3 \Rightarrow f\left( x \right) = \sqrt {{{\left( {{x^2} + x + 3} \right)}^2} - 1} \]
Vậy \[f\left( 1 \right) = \sqrt {24} = 2\sqrt 6 \]
Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!