Câu hỏi:
03/01/2023 2,615Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đặt \[x = \cos t,t < 0 < \pi \Rightarrow dx = - \sin t.dt\].
Khi đó \[I = - \int {\frac{{\sin t.dt}}{{{{\sin }^3}t}}dt} = - \int {\frac{{dt}}{{{{\sin }^2}t}}} = \cot t + C\] hay \[I = \frac{x}{{\sqrt {1 - {x^2}} }} + C\]
Vậy \[\int {\frac{1}{{\sqrt {{{\left( {1 - {x^2}} \right)}^3}} }}dx} = \frac{x}{{\sqrt {1 - {x^2}} }} + C\]
Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!