Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đặt \[\left\{ \begin{array}{l}u = \sin x\\dv = {e^x}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \cos xdx\\v = {e^x}\end{array} \right.\]
Khi đó \[\int {{e^x}.\sin xdx} = {e^x}.\sin x - \int {{e^x}.\cos xdx} \]
Đến đây ta phải áp dụng phương pháp từng phần một lần nữa, cụ thể:
Với \[\int {{e^x}.\cos xdx} \] ta thực hiện tương tự như sau:
+ Đặt \[\left\{ \begin{array}{l}u = \cos x\\dv = {e^x}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = - \sin xdx\\v = {e^x}\end{array} \right.\]
+ Khi đó \[\int {{e^x}.\cos xdx} = {e^x}.\cos x + \int {{e^x}.\sin xdx} \]
Vậy \[\begin{array}{l}\;\;\;\;\;\int {{e^x}.\sin xdx} = {e^x}.\sin x - \int {{e^x}.\cos xdx} \\ \Leftrightarrow \int {{e^x}.\sin xdx} = {e^x}.\sin x - \left( {{e^x}.\cos x + \int {{e^x}.\sin xdx} } \right)\\ \Leftrightarrow \int {{e^x}.\sin xdx} = \frac{1}{2}{e^x}.\left( {\sin x - \cos x} \right) + C\end{array}\]
Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
về câu hỏi!