Câu hỏi:
03/01/2023 1,562Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đặt \[\left\{ \begin{array}{l}u = \ln \left( {2 + {x^2}} \right)\\dv = xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \frac{{2x}}{{{x^2} + 2}}dx\\v = \frac{{{x^2} + 2}}{2}\end{array} \right.\]
Khi đó \[I = \frac{{{x^2} + 2}}{2}\ln \left( {{x^2} + 2} \right) - \int {xdx} = \frac{{{x^2} + 2}}{2}\ln \left( {{x^2} + 2} \right) - \frac{{{x^2}}}{2} + C\]
Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!