Quảng cáo
Trả lời:
Hướng dẫn giải
Nếu làm thông thường thì từng phần 4 lần ta mới thu được kết quả. Ở đây, chúng tôi trình bày theo sơ đồ đường chéo cho kết quả và nhanh chóng hơn.
Vậy \[I = \left( {\frac{{{x^4}}}{3} - \frac{{4{x^3}}}{{{3^2}}} + \frac{{12{x^2}}}{{{3^3}}} - \frac{{24x}}{{{3^4}}} + \frac{{24}}{{{3^5}}}} \right){e^{3x}} + C\].
Chọn A.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Phân tích \[f\left( x \right) = \frac{{2x + 1}}{{{x^4} + 2{x^3} + {x^2}}} = \frac{{2x + 1}}{{{x^2}{{\left( {x + 1} \right)}^2}}} = \frac{{2x + 1}}{{{{\left( {{x^2} + x} \right)}^2}}}\]
Khi đó \[F\left( x \right) = \int {\frac{{2x + 1}}{{{{\left( {{x^2} + x} \right)}^2}}}dx} = \int {\frac{1}{{{{\left( {{x^2} + x} \right)}^2}}}d\left( {{x^2} + x} \right)} = - \frac{1}{{{x^2} + x}} + C\].
Mặt khác \[F\left( 1 \right) = \frac{1}{2} \Rightarrow - \frac{1}{2} + C = \frac{1}{2} \Rightarrow C = 1\].
Vậy \[F\left( x \right) = - \frac{1}{{{x^2} + x}} + 1 = - \frac{1}{{x\left( {x + 1} \right)}} + 1 = - \left( {\frac{1}{x} - \frac{1}{{x + 1}}} \right) + 1\].
Do đó \[\begin{array}{l}S = F\left( 1 \right) + F\left( 2 \right) + F\left( 3 \right) + ... + F\left( {2019} \right) = - \left( {1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + ... + \frac{1}{{2019}} - \frac{1}{{2020}}} \right) + 2019\\\;\;\; = - \left( {1 - \frac{1}{{2020}}} \right) + 2019 = 2018 + \frac{1}{{2020}} = 2018\frac{1}{{2020}}\end{array}\]
Chọn C.
Lời giải
Hướng dẫn giải
\[f\left( x \right) = \int {f'\left( x \right)dx} = \int {\frac{2}{{{x^2} - 1}}dx} = \int {\left( {\frac{1}{{x - 1}} - \frac{1}{{x + 1}}} \right)dx} = \ln \left| {\frac{{x - 1}}{{x + 1}}} \right| + C\]
Hay \[f\left( x \right) = \ln \left| {\frac{{x - 1}}{{x + 1}}} \right| + C = \left\{ \begin{array}{l}\ln \left( {\frac{{x - 1}}{{x + 1}}} \right) + {C_1}\;khi\;x > 1\\\ln \frac{{1 - x}}{{1 + x}} + {C_2}\;khi\; - 1 < x < 1\\\ln \left( {\frac{{x - 1}}{{x + 1}}} \right) + {C_3}\;khi\;x < - 1\end{array} \right.\]
Theo bài ra, ta có: \[\left\{ \begin{array}{l}f\left( { - 3} \right) + f\left( 3 \right) = 2\ln 2\\f\left( { - \frac{1}{2}} \right) + f\left( {\frac{1}{2}} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{C_1} + {C_3} = 2\ln 2\\{C_2} = 0\end{array} \right.\]
Do đó \[f\left( { - 2} \right) + f\left( 0 \right) + f\left( 4 \right) = \ln 3 + {C_3} + {C_2} + \ln \frac{3}{5} + {C_1} = 2\ln 2 + 2\ln 3 - \ln 5\].
Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.