Câu hỏi:

11/07/2024 4,698

Cho tam giác ABC. Gọi D, E tương ứng là trung điểm của BC, CA. Hãy biểu thị các vectơ \(\overrightarrow {AB} ,\overrightarrow {BC} ,\overrightarrow {CA} \) theo hai vectơ \(\overrightarrow {AD} \) và \(\overrightarrow {BE} .\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Cho tam giác ABC. Gọi D, E tương ứng là trung điểm của BC, CA. Hãy biểu thị các vectơ AB , vectơ BC , vectơ CA theo hai vectơ (ảnh 1)

Ta có:

+) D là trung điểm của BC nên \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AD} \)

+) E là trung điểm của AC nên \(\overrightarrow {AC} = 2\overrightarrow {AE} \)

Do đó \(\overrightarrow {AC} = 2\overrightarrow {AE} = 2\left( {\overrightarrow {AB} + \overrightarrow {BE} } \right)\)

\( \Rightarrow \overrightarrow {AB} + 2\left( {\overrightarrow {AB} + \overrightarrow {BE} } \right) = 2\overrightarrow {AD} \)

\[ \Rightarrow \overrightarrow {AB} + 2\overrightarrow {AB} + 2\overrightarrow {BE} = 2\overrightarrow {AD} \]

\[ \Rightarrow 3\overrightarrow {AB} + 2\overrightarrow {BE} = 2\overrightarrow {AD} \]

\[ \Rightarrow 3\overrightarrow {AB} = 2\overrightarrow {AD} - 2\overrightarrow {BE} \]

\( \Rightarrow \overrightarrow {AB} = \frac{2}{3}\overrightarrow {AD} - \frac{2}{3}\overrightarrow {BE} \)

+) Vì \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AD} \) nên \(\overrightarrow {AC} = 2\overrightarrow {AD} - \overrightarrow {AB} \)

Mà \(\overrightarrow {AB} = \frac{2}{3}\overrightarrow {AD} - \frac{2}{3}\overrightarrow {BE} \)

\( \Rightarrow \overrightarrow {AC} = 2\overrightarrow {AD} - \left( {\frac{2}{3}\overrightarrow {AD} - \frac{2}{3}\overrightarrow {BE} } \right)\)

\( \Rightarrow \overrightarrow {AC} = 2\overrightarrow {AD} - \frac{2}{3}\overrightarrow {AD} + \frac{2}{3}\overrightarrow {BE} \)

\( \Rightarrow \overrightarrow {AC} = \frac{4}{3}\overrightarrow {AD} + \frac{2}{3}\overrightarrow {BE} \)

\( \Rightarrow \overrightarrow {CA} = - \frac{4}{3}\overrightarrow {AD} - \frac{2}{3}\overrightarrow {BE} \)

+) \(\overrightarrow {BC} = \overrightarrow {AC} - \overrightarrow {AB} \) (quy tắc hiệu)

\( \Rightarrow \overrightarrow {BC} = \left( {\frac{4}{3}\overrightarrow {AD} + \frac{2}{3}\overrightarrow {BE} } \right) - \left( {\frac{2}{3}\overrightarrow {AD} - \frac{2}{3}\overrightarrow {BE} } \right)\)

\[ \Rightarrow \overrightarrow {BC} = \frac{4}{3}\overrightarrow {AD} + \frac{2}{3}\overrightarrow {BE} - \frac{2}{3}\overrightarrow {AD} + \frac{2}{3}\overrightarrow {BE} \]

\[ \Rightarrow \overrightarrow {BC} = \frac{2}{3}\overrightarrow {AD} + \frac{4}{3}\overrightarrow {BE} \]

Vậy \(\overrightarrow {AB} = \frac{2}{3}\overrightarrow {AD} - \frac{2}{3}\overrightarrow {BE} ;\) \[\overrightarrow {BC} = \frac{2}{3}\overrightarrow {AD} + \frac{4}{3}\overrightarrow {BE} \] và \(\overrightarrow {CA} = - \frac{4}{3}\overrightarrow {AD} - \frac{2}{3}\overrightarrow {BE} .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O. Chứng minh rằng ba điểm G, H, O cùng thuộc một đường thẳng.  (ảnh 1)

Vì G là trọng tâm tam giác ABC nên \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 3\overrightarrow {OG} .\]

Mà \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} \] (câu b)

Suy ra \(\overrightarrow {OH} = 3\overrightarrow {OG} \)

Khi đó \(\overrightarrow {OH} \) và \(\overrightarrow {OG} \) cùng phương, cùng hướng

O, H, G thẳng hàng.

Vậy ba điểm O, H, G thẳng hàng.

Lời giải

Lời giải

Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O. Chứng minh rằng vecto OA  + vecto OB  + vecto OC  = vecto OH (ảnh 1)

M là trung điểm của BC nên \(\overrightarrow {OB} + \overrightarrow {OC} = 2\overrightarrow {OM} \)

Mà \[\overrightarrow {AH} = 2\overrightarrow {OM} \] (câu a)

\[ \Rightarrow \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {AH} \]

\[ \Rightarrow \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OA} + \overrightarrow {AH} \]

\[ \Rightarrow \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} .\]

Vậy \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay