Câu hỏi:

11/07/2024 757

Cho lục giác ABCDEF. Gọi M, N, P, Q, R, S theo thứ tự là trung điểm của các cạnh AB, BC, CD, DE, EF, FA. Chứng minh rằng hai tam giác MPR và NQS có cùng trọng tâm.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Cho lục giác ABCDEF. Gọi M, N, P, Q, R, S theo thứ tự là trung điểm của các cạnh AB, BC, CD, DE, EF, FA. Chứng minh rằng hai tam giác MPR và NQS có cùng trọng tâm. (ảnh 1)

+)

Vì M, N lần lượt là trung điểm của AB, BC

Nên MN là đường trung bình của tam giác ABC.

MN // AC và \(MN = \frac{1}{2}AC\) (tính chất đường trung bình)

Do đó \(\overrightarrow {MN} = \frac{1}{2}\overrightarrow {AC} \)(1)

Chứng minh tương tự ta cũng có: \(\overrightarrow {PQ} = \frac{1}{2}\overrightarrow {CE} \)(2)

Và \(\overrightarrow {RS} = \frac{1}{2}\overrightarrow {EA} \)(3)

Từ (1), (2) và (3) ta có:

\(\overrightarrow {MN} + \overrightarrow {PQ} + \overrightarrow {RS} = \frac{1}{2}\overrightarrow {AC} + \frac{1}{2}\overrightarrow {CE} + \frac{1}{2}\overrightarrow {EA} \)

\( = \frac{1}{2}\left( {\overrightarrow {AC} + \overrightarrow {CE} + \overrightarrow {EA} } \right)\)

\( = \frac{1}{2}\left( {\overrightarrow {AE} + \overrightarrow {EA} } \right)\) (quy tắc ba điểm)

\( = \frac{1}{2}\overrightarrow {{\rm{AA}}} \)(quy tắc ba điểm)

\( = \frac{1}{2}.\overrightarrow 0 = \overrightarrow 0 \)

Do đó \(\overrightarrow {MN} + \overrightarrow {PQ} + \overrightarrow {RS} = \overrightarrow 0 \)

+) Giả sử G và G' lần lượt là trọng tâm của tam giác MPR và tam giác NQS.

Khi đó ta có: \(\overrightarrow {MG} + \overrightarrow {PG} + \overrightarrow {RG} = \overrightarrow 0 \) và \(\overrightarrow {NG'} + \overrightarrow {QG'} + \overrightarrow {SG'} = \overrightarrow 0 \) hay \(\overrightarrow {G'N} + \overrightarrow {G'Q} + \overrightarrow {G'S} = \overrightarrow 0 \)

Mặt khác: theo quy tắc ba điểm ta có:

+) \(\overrightarrow {MN} = \overrightarrow {MG} + \overrightarrow {GG'} + \overrightarrow {G'N} ;\)

+) \(\overrightarrow {PQ} = \overrightarrow {PG} + \overrightarrow {GG'} + \overrightarrow {G'Q} ;\)

+) \(\overrightarrow {RS} = \overrightarrow {RG} + \overrightarrow {GG'} + \overrightarrow {G'S} ;\)

\( \Rightarrow \overrightarrow {MN} + \overrightarrow {PQ} + \overrightarrow {RS} = \overrightarrow {MG} + \overrightarrow {PG} + \overrightarrow {RG} + 3.\overrightarrow {GG'} + \overrightarrow {G'N} + \overrightarrow {G'Q} + \overrightarrow {G'S} \)

\( = \left( {\overrightarrow {MG} + \overrightarrow {PG} + \overrightarrow {RG} } \right) + 3.\overrightarrow {GG'} + \left( {\overrightarrow {G'N} + \overrightarrow {G'Q} + \overrightarrow {G'S} } \right)\)

\( = \overrightarrow 0 + 3.\overrightarrow {GG'} + \overrightarrow 0 \)

\( = 3.\overrightarrow {GG'} \)

+) Lại có \(\overrightarrow {MN} + \overrightarrow {PQ} + \overrightarrow {RS} = \overrightarrow 0 \) (chứng minh trên)

Nên \(3\overrightarrow {GG'} = \overrightarrow 0 \)

\( \Rightarrow \overrightarrow {GG'} = \overrightarrow 0 \)

Suy ra G và G' trùng nhau.

Vậy hai tam giác MPR và NQS có cùng trọng tâm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O. Chứng minh rằng ba điểm G, H, O cùng thuộc một đường thẳng.  (ảnh 1)

Vì G là trọng tâm tam giác ABC nên \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 3\overrightarrow {OG} .\]

Mà \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} \] (câu b)

Suy ra \(\overrightarrow {OH} = 3\overrightarrow {OG} \)

Khi đó \(\overrightarrow {OH} \) và \(\overrightarrow {OG} \) cùng phương, cùng hướng

O, H, G thẳng hàng.

Vậy ba điểm O, H, G thẳng hàng.

Lời giải

Lời giải

Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O. Chứng minh rằng vecto OA  + vecto OB  + vecto OC  = vecto OH (ảnh 1)

M là trung điểm của BC nên \(\overrightarrow {OB} + \overrightarrow {OC} = 2\overrightarrow {OM} \)

Mà \[\overrightarrow {AH} = 2\overrightarrow {OM} \] (câu a)

\[ \Rightarrow \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {AH} \]

\[ \Rightarrow \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OA} + \overrightarrow {AH} \]

\[ \Rightarrow \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} .\]

Vậy \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP