Câu hỏi:

13/07/2022 3,348

Cho tam giác ABC.

Tìm điểm K thoả mãn \(\overrightarrow {KA} + 2\overrightarrow {KB} + 3\overrightarrow {KC} = \overrightarrow 0 .\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Cho tam giác ABC.Tìm điểm K thoả mãn vecto KA  + 2 vecto KB  + 3 vecto KC  =  vecto 0  (ảnh 1)

Gọi I là trung điểm của AC, H là trung điểm của BC.

Khi đó \[\overrightarrow {KA} + \overrightarrow {KC} = 2\overrightarrow {KI} \]và \[\overrightarrow {KB} + \overrightarrow {KC} = 2\overrightarrow {KH} \]

\[ \Rightarrow \overrightarrow {KA} + 2\overrightarrow {KB} + 3\overrightarrow {KC} = \left( {\overrightarrow {KA} + \overrightarrow {KC} } \right) + 2\left( {\overrightarrow {KB} + \overrightarrow {KC} } \right)\]

\( = 2\overrightarrow {KI} + 2.2\overrightarrow {KH} \)\[ = 2\overrightarrow {KI} + 4\overrightarrow {KH} \]

Mà \(\overrightarrow {KA} + 2\overrightarrow {KB} + 3\overrightarrow {KC} = \overrightarrow 0 .\)

Nên \[2\overrightarrow {KI} + 4\overrightarrow {KH} = \overrightarrow 0 \]

\[ \Rightarrow 2\overrightarrow {KI} = - 4\overrightarrow {KH} \]

\[ \Rightarrow \overrightarrow {KI} = - 2\overrightarrow {KH} \]

Khi đó \[\overrightarrow {KI} \] và \[\overrightarrow {KH} \] là hai vectơ cùng phương, ngược hướng và \(\left| {\overrightarrow {KI} } \right| = 2\left| {\overrightarrow {KH} } \right|\)

Do đó điểm K nằm giữa hai điểm I và H sao cho KI = 2KH.

Vậy ta có điểm K thỏa mãn \(\overrightarrow {KA} + 2\overrightarrow {KB} + 3\overrightarrow {KC} = \overrightarrow 0 \) như hình vẽ.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O.

Chứng minh rằng ba điểm G, H, O cùng thuộc một đường thẳng.

Xem đáp án » 11/07/2024 13,573

Câu 2:

Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O.

Chứng minh rằng \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} .\]

Xem đáp án » 11/07/2024 9,540

Câu 3:

Cho tam giác ABC.

Tìm điểm M sao cho \[\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 .\]

Xem đáp án » 11/07/2024 8,760

Câu 4:

Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O.

Gọi M là trung điểm của BC. Chứng minh rằng \[\overrightarrow {AH} = 2\overrightarrow {OM} .\]

Xem đáp án » 11/07/2024 7,827

Câu 5:

Cho tam giác ABC.

Xác định điểm N thoả mãn \[4\overrightarrow {NA} - 2\overrightarrow {NB} + \overrightarrow {NC} = \overrightarrow 0 .\]

Xem đáp án » 11/07/2024 7,294

Câu 6:

Cho tam giác OAB vuông cân, với OA = OB = a. Hãy xác định độ dài của các vectơ sau \(\overrightarrow {OA} + \overrightarrow {OB} ,\) \(\overrightarrow {OA} - \overrightarrow {OB} ,\) \(\overrightarrow {OA} + 2\overrightarrow {OB} ,\) \(2\overrightarrow {OA} - 3\overrightarrow {OB} .\)

Xem đáp án » 11/07/2024 6,097

Câu 7:

Cho tam giác ABC đều với trọng tâm O. M là một điểm tuỳ ý nằm trong tam giác. Gọi D, E, F theo thứ tự là hình chiếu vuông góc của M trên BC, CA, AB.

Chứng minh rằng \(\overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} = \frac{3}{2}\overrightarrow {MO} .\)

Xem đáp án » 11/07/2024 5,268
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay