Cho tam giác ABC.
Tìm tập hợp các điểm M thoả mãn \(\left| {\overrightarrow {MA} + \overrightarrow {2MB} + 3\overrightarrow {MC} } \right| = \left| {\overrightarrow {MB} - \overrightarrow {MC} } \right|.\)
Quảng cáo
Trả lời:
Lời giải
Chứng minh tương tự câu a ta có:
\(\overrightarrow {MA} + \overrightarrow {2MB} + 3\overrightarrow {MC} = 2\overrightarrow {MI} + 4\overrightarrow {MH} \)
\( = 2\left( {\overrightarrow {MK} + \overrightarrow {KI} } \right) + 4\left( {\overrightarrow {MK} + \overrightarrow {KH} } \right)\)
\( = 2\overrightarrow {MK} + 2\overrightarrow {KI} + 4\overrightarrow {MK} + 4\overrightarrow {KH} \)
\( = 6\overrightarrow {MK} + \left( {2\overrightarrow {KI} + 4\overrightarrow {KH} } \right)\)
Mà \[2\overrightarrow {KI} + 4\overrightarrow {KH} = \overrightarrow 0 \] (câu a)
Nên \(\overrightarrow {MA} + \overrightarrow {2MB} + 3\overrightarrow {MC} = 6\overrightarrow {MK} \)
Lại có: \(\overrightarrow {MB} - \overrightarrow {MC} = \overrightarrow {CB} \)
Do đó \(\left| {\overrightarrow {MA} + \overrightarrow {2MB} + 3\overrightarrow {MC} } \right| = \left| {\overrightarrow {MB} - \overrightarrow {MC} } \right|.\)
\( \Leftrightarrow \left| {6\overrightarrow {MK} } \right| = \left| {\overrightarrow {CB} } \right|\)
6MK = CB
\( \Leftrightarrow KM = \frac{{BC}}{6}\)
Do đó tập hợp điểm M là đường tròn tâm K, bán kính bằng \(\frac{{BC}}{6}\) như hình vẽ.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Vì G là trọng tâm tam giác ABC nên \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 3\overrightarrow {OG} .\]
Mà \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} \] (câu b)
Suy ra \(\overrightarrow {OH} = 3\overrightarrow {OG} \)
Khi đó \(\overrightarrow {OH} \) và \(\overrightarrow {OG} \) cùng phương, cùng hướng
O, H, G thẳng hàng.
Vậy ba điểm O, H, G thẳng hàng.
Lời giải
Lời giải
Vì
M là trung điểm của BC nên \(\overrightarrow {OB} + \overrightarrow {OC} = 2\overrightarrow {OM} \)
Mà \[\overrightarrow {AH} = 2\overrightarrow {OM} \] (câu a)
\[ \Rightarrow \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {AH} \]
\[ \Rightarrow \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OA} + \overrightarrow {AH} \]
\[ \Rightarrow \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} .\]
Vậy \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} .\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.