Một vật đồng chất được thả vào một cốc chất lỏng. Ở trạng thái cân bằng, vật chìm một nửa thể tích trong chất lỏng. Tìm mối liên hệ giữa trọng lực \(\overrightarrow P \) của vật và lực đẩy Archimedes \(\overrightarrow F \) mà chất lỏng tác động lên vật. Tính tỉ số giữa trọng lượng riêng của vật và của chất lỏng.
Quảng cáo
Trả lời:
Lời giải
Trọng
lực \(\overrightarrow P \) của vật và lực đẩy Archimedes \(\overrightarrow F \) mà chất lỏng tác động lên vật được mô tả như hình vẽ trên.
Do vật ở trạng thái cân bằng nên hai lực \(\overrightarrow P \)và \(\overrightarrow F \) ngược hướng nhau và có cường độ bằng nhau.
\( \Rightarrow \left| {\overrightarrow P } \right| = \left| {\overrightarrow F } \right|\)
Gọi d và d' là trọng lượng riêng của vật và chất lỏng;
V là thể tích của vật
Khi thả vật vào cốc chất lỏng thì ở trạng thái cân bằng, vật chìm một nửa thể tích trong chất lỏng nên thể tích chất lỏng bị chiếm chỗ là \(\frac{V}{2}.\)
Khi đó trọng lượng của vật là: P = d.V
Và lực đẩy Archimedes mà chất lỏng tác động lên vật là: \({F_A} = d'.\frac{V}{2}.\)
Do đó \[\left| {\overrightarrow P } \right| = \left| {\overrightarrow F } \right| \Leftrightarrow d.V = d'.\frac{V}{2} \Leftrightarrow d = \frac{{d'}}{2} \Leftrightarrow \frac{d}{{d'}} = \frac{1}{2}.\]
Vậy tỉ số giữa trọng lượng riêng của vật và của chất lỏng bằng \(\frac{1}{2}.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Vì G là trọng tâm tam giác ABC nên \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = 3\overrightarrow {OG} .\]
Mà \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} \] (câu b)
Suy ra \(\overrightarrow {OH} = 3\overrightarrow {OG} \)
Khi đó \(\overrightarrow {OH} \) và \(\overrightarrow {OG} \) cùng phương, cùng hướng
O, H, G thẳng hàng.
Vậy ba điểm O, H, G thẳng hàng.
Lời giải
Lời giải
Vì
M là trung điểm của BC nên \(\overrightarrow {OB} + \overrightarrow {OC} = 2\overrightarrow {OM} \)
Mà \[\overrightarrow {AH} = 2\overrightarrow {OM} \] (câu a)
\[ \Rightarrow \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {AH} \]
\[ \Rightarrow \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OA} + \overrightarrow {AH} \]
\[ \Rightarrow \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} .\]
Vậy \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} .\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.