Câu hỏi:
11/07/2024 4,261Một vật đồng chất được thả vào một cốc chất lỏng. Ở trạng thái cân bằng, vật chìm một nửa thể tích trong chất lỏng. Tìm mối liên hệ giữa trọng lực \(\overrightarrow P \) của vật và lực đẩy Archimedes \(\overrightarrow F \) mà chất lỏng tác động lên vật. Tính tỉ số giữa trọng lượng riêng của vật và của chất lỏng.
Quảng cáo
Trả lời:
Lời giải
Trọng
lực \(\overrightarrow P \) của vật và lực đẩy Archimedes \(\overrightarrow F \) mà chất lỏng tác động lên vật được mô tả như hình vẽ trên.
Do vật ở trạng thái cân bằng nên hai lực \(\overrightarrow P \)và \(\overrightarrow F \) ngược hướng nhau và có cường độ bằng nhau.
\( \Rightarrow \left| {\overrightarrow P } \right| = \left| {\overrightarrow F } \right|\)
Gọi d và d' là trọng lượng riêng của vật và chất lỏng;
V là thể tích của vật
Khi thả vật vào cốc chất lỏng thì ở trạng thái cân bằng, vật chìm một nửa thể tích trong chất lỏng nên thể tích chất lỏng bị chiếm chỗ là \(\frac{V}{2}.\)
Khi đó trọng lượng của vật là: P = d.V
Và lực đẩy Archimedes mà chất lỏng tác động lên vật là: \({F_A} = d'.\frac{V}{2}.\)
Do đó \[\left| {\overrightarrow P } \right| = \left| {\overrightarrow F } \right| \Leftrightarrow d.V = d'.\frac{V}{2} \Leftrightarrow d = \frac{{d'}}{2} \Leftrightarrow \frac{d}{{d'}} = \frac{1}{2}.\]
Vậy tỉ số giữa trọng lượng riêng của vật và của chất lỏng bằng \(\frac{1}{2}.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
Đã bán 121
Đã bán 100
Đã bán 218
Đã bán 1k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O.
Chứng minh rằng ba điểm G, H, O cùng thuộc một đường thẳng.
Câu 2:
Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O.
Chứng minh rằng \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} .\]
Câu 3:
Cho tam giác ABC.
Tìm điểm M sao cho \[\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 .\]
Câu 4:
Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O.
Gọi M là trung điểm của BC. Chứng minh rằng \[\overrightarrow {AH} = 2\overrightarrow {OM} .\]
Câu 5:
Cho tam giác ABC.
Xác định điểm N thoả mãn \[4\overrightarrow {NA} - 2\overrightarrow {NB} + \overrightarrow {NC} = \overrightarrow 0 .\]
Câu 6:
Cho tam giác OAB vuông cân, với OA = OB = a. Hãy xác định độ dài của các vectơ sau \(\overrightarrow {OA} + \overrightarrow {OB} ,\) \(\overrightarrow {OA} - \overrightarrow {OB} ,\) \(\overrightarrow {OA} + 2\overrightarrow {OB} ,\) \(2\overrightarrow {OA} - 3\overrightarrow {OB} .\)
Câu 7:
Cho tam giác ABC đều với trọng tâm O. M là một điểm tuỳ ý nằm trong tam giác. Gọi D, E, F theo thứ tự là hình chiếu vuông góc của M trên BC, CA, AB.
Chứng minh rằng \(\overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} = \frac{3}{2}\overrightarrow {MO} .\)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận