Câu hỏi:

11/07/2024 3,889

Một vật đồng chất được thả vào một cốc chất lỏng. Ở trạng thái cân bằng, vật chìm một nửa thể tích trong chất lỏng. Tìm mối liên hệ giữa trọng lực \(\overrightarrow P \) của vật và lực đẩy Archimedes \(\overrightarrow F \) mà chất lỏng tác động lên vật. Tính tỉ số giữa trọng lượng riêng của vật và của chất lỏng.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Một vật đồng chất được thả vào một cốc chất lỏng. Ở trạng thái cân bằng, vật chìm một nửa thể tích trong chất lỏng. Tìm mối liên hệ giữa trọng lực vecto P  của vật và lực đẩy Ar (ảnh 1)

Trọng

lực \(\overrightarrow P \) của vật và lực đẩy Archimedes \(\overrightarrow F \) mà chất lỏng tác động lên vật được mô tả như hình vẽ trên.

Do vật ở trạng thái cân bằng nên hai lực \(\overrightarrow P \)và \(\overrightarrow F \) ngược hướng nhau và có cường độ bằng nhau.

\( \Rightarrow \left| {\overrightarrow P } \right| = \left| {\overrightarrow F } \right|\)

Gọi d và d' là trọng lượng riêng của vật và chất lỏng;

V là thể tích của vật

Khi thả vật vào cốc chất lỏng thì ở trạng thái cân bằng, vật chìm một nửa thể tích trong chất lỏng nên thể tích chất lỏng bị chiếm chỗ là \(\frac{V}{2}.\)

Khi đó trọng lượng của vật là: P = d.V

Và lực đẩy Archimedes mà chất lỏng tác động lên vật là: \({F_A} = d'.\frac{V}{2}.\)

Do đó \[\left| {\overrightarrow P } \right| = \left| {\overrightarrow F } \right| \Leftrightarrow d.V = d'.\frac{V}{2} \Leftrightarrow d = \frac{{d'}}{2} \Leftrightarrow \frac{d}{{d'}} = \frac{1}{2}.\]

Vậy tỉ số giữa trọng lượng riêng của vật và của chất lỏng bằng \(\frac{1}{2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O.

Chứng minh rằng ba điểm G, H, O cùng thuộc một đường thẳng.

Xem đáp án » 11/07/2024 9,204

Câu 2:

Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O.

Chứng minh rằng \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OH} .\]

Xem đáp án » 11/07/2024 8,426

Câu 3:

Cho tam giác ABC.

Tìm điểm M sao cho \[\overrightarrow {MA} + \overrightarrow {MB} + 2\overrightarrow {MC} = \overrightarrow 0 .\]

Xem đáp án » 11/07/2024 7,694

Câu 4:

Cho tam giác ABC có trực tâm H, trọng tâm G và tâm đường tròn ngoại tiếp O.

Gọi M là trung điểm của BC. Chứng minh rằng \[\overrightarrow {AH} = 2\overrightarrow {OM} .\]

Xem đáp án » 11/07/2024 7,163

Câu 5:

Cho tam giác ABC.

Xác định điểm N thoả mãn \[4\overrightarrow {NA} - 2\overrightarrow {NB} + \overrightarrow {NC} = \overrightarrow 0 .\]

Xem đáp án » 11/07/2024 6,961

Câu 6:

Cho tam giác OAB vuông cân, với OA = OB = a. Hãy xác định độ dài của các vectơ sau \(\overrightarrow {OA} + \overrightarrow {OB} ,\) \(\overrightarrow {OA} - \overrightarrow {OB} ,\) \(\overrightarrow {OA} + 2\overrightarrow {OB} ,\) \(2\overrightarrow {OA} - 3\overrightarrow {OB} .\)

Xem đáp án » 11/07/2024 5,859

Câu 7:

Cho tam giác ABC đều với trọng tâm O. M là một điểm tuỳ ý nằm trong tam giác. Gọi D, E, F theo thứ tự là hình chiếu vuông góc của M trên BC, CA, AB.

Chứng minh rằng \(\overrightarrow {MD} + \overrightarrow {ME} + \overrightarrow {MF} = \frac{3}{2}\overrightarrow {MO} .\)

Xem đáp án » 11/07/2024 4,772

Bình luận


Bình luận