Câu hỏi:

13/07/2022 3,430

Cho tam giác ABC đều có độ dài các cạnh bằng 3a. Lấy điểm M thuộc cạnh BC sao cho MB = 2MC. Tích vô hướng của hai vectơ \(\overrightarrow {MA} \) và \[\overrightarrow {MC} \] bằng

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Ta có: MB = 2MC nên M nằm giữa B và C

\( \Rightarrow \frac{{BM}}{{MC}} = \frac{2}{1} \Rightarrow \frac{{BM}}{{BM + MC}} = \frac{2}{{2 + 1}}\)

Hay \(\frac{{BM}}{{BC}} = \frac{2}{3} \Rightarrow BM = \frac{2}{3}BC\)

Do đó \(\overrightarrow {BM} = \frac{2}{3}\overrightarrow {BC} \)

Tương tự ta có \(\overrightarrow {MC} = \frac{1}{3}\overrightarrow {BC} .\)

• \(\overrightarrow {MA} = \overrightarrow {BA} - \overrightarrow {BM} = - \overrightarrow {AB} - \frac{2}{3}\overrightarrow {BC} \)

\( = - \overrightarrow {AB} - \frac{2}{3}\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right)\)

\( = - \overrightarrow {AB} - \frac{2}{3}\overrightarrow {AC} + \frac{2}{3}\overrightarrow {AB} \)

\( = - \frac{1}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {AC} \)

• \[\overrightarrow {MC} = \frac{1}{3}\overrightarrow {BC} = \frac{1}{3}\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right)\]

\( = \frac{1}{3}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AB} \)

• Khi đó:

\(\overrightarrow {MA} .\overrightarrow {MC} = \left( { - \frac{1}{3}\overrightarrow {AB} - \frac{2}{3}\overrightarrow {AC} } \right).\left( {\frac{1}{3}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AB} } \right)\)\( = - \frac{1}{9}\overrightarrow {AB} .\overrightarrow {AC} + \frac{1}{9}A{B^2} - \frac{2}{9}A{C^2} + \frac{2}{9}\overrightarrow {AB} .\overrightarrow {AC} \)

\( = \frac{1}{9}\overrightarrow {AB} .\overrightarrow {AC} + \frac{1}{9}A{B^2} - \frac{2}{9}A{C^2}\)

• Tam giác ABC đều có độ dài cạnh bằng 3a nên AB = AC = BC = 3a và \(\widehat {BAC} = 60^\circ .\)

Ta có: \(\overrightarrow {AB} .\overrightarrow {AC} = AB.AC.cos\widehat {BAC}\)

= 3a.3a.cos60° = \(\frac{9}{2}{a^2}.\)

Do đó \[\overrightarrow {MA} .\overrightarrow {MC} = \frac{1}{9}\overrightarrow {AB} .\overrightarrow {AC} + \frac{1}{9}A{B^2} - \frac{2}{9}A{B^2}\]

\[ = \frac{1}{9}\overrightarrow {AB} .\overrightarrow {AC} - \frac{1}{9}A{B^2}\]

\[ = \frac{1}{9}.\frac{9}{2}{a^2} - \frac{1}{9}.{\left( {3a} \right)^2}\]

= \(\frac{1}{2}\)a2 – a2 = \( - \frac{1}{2}\)a2.

Vậy \[\overrightarrow {MA} .\overrightarrow {MC} = \]\( - \frac{1}{2}\)a2.

Ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng toạ độ Oxy cho ba điểm A(–2; 1), B(1; 4) và C(5; −2).

Tìm toạ độ trực tâm H và tâm đường tròn ngoại tiếp I của tam giác ABC.

Xem đáp án » 12/07/2024 9,737

Câu 2:

Cho hình vuông ABCD với độ dài cạnh bằng a. Tích vô hướng \(\overrightarrow {AB} .\overrightarrow {AC} \) bằng:

Xem đáp án » 13/07/2022 6,381

Câu 3:

Cho tam giác ABC vuông tại A và AB = 3, AC = 4. Độ dài của vectơ \[\overrightarrow {CB} + \overrightarrow {AB} \] bằng

Xem đáp án » 13/07/2022 5,735

Câu 4:

Cho tam giác ABC đều, trọng tâm G, có độ dài các cạnh bằng 3. Độ dài của vectơ \(\overrightarrow {AG} \) bằng

Xem đáp án » 13/07/2022 5,227

Câu 5:

B. Tự luận

Cho hình bình hành ABCD tâm O. Gọi M, N theo thứ tự là trung điểm của BC, AD. Gọi I, J lần lượt là giao điểm của BD với AM, CN. Xét các vectơ khác \(\overrightarrow 0 ,\) có đầu mút lấy từ các điểm A, B, C, D, M, N, I, J, O.

Hãy chỉ ra những vectơ bằng vectơ \(\overrightarrow {AB} ;\) những vectơ cùng hướng với \(\overrightarrow {AB} .\)

Xem đáp án » 12/07/2024 4,768

Câu 6:

Cho tam giác ABC đều các cạnh có độ dài bằng 1. Lấy M, N, P lần lượt thuộc các cạnh BC, CA, AB sao cho BM = 2MC, CN = 2NA và AM ⊥ NP. Tỉ số của \(\frac{{AP}}{{AB}}\) bằng

Xem đáp án » 13/07/2022 4,758

Câu 7:

Cho tam giác ABC có AB = 2, BC = 4 và \(\widehat {ABC} = 60^\circ .\) Độ dài của vectơ \(\overrightarrow {AC} - \overrightarrow {BA} \) bằng

Xem đáp án » 13/07/2022 4,412

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store