Câu hỏi:
12/07/2024 883Trên cạnh BC của tam giác ABC lấy các điểm M, N không trùng với B và C sao cho BM = MN =NC.
Gọi G là trọng tâm của tam giác ABC. Đặt \[\overrightarrow {GB} = \overrightarrow u \]và \[\overrightarrow {GC} = \overrightarrow v .\] Hãy biểu thị các vectơ sau qua hai vectơ \(\overrightarrow u \) và \(\overrightarrow v :\) \[\overrightarrow {GA} ,{\rm{ }}\overrightarrow {GM} ,{\rm{ }}\overrightarrow {GN} .\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
• Vì G là trọng tâm của tam giác ABC nên \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)
\( \Rightarrow \overrightarrow {GA} = - \overrightarrow {GB} - \overrightarrow {GC} \)
\[ \Rightarrow \overrightarrow {GA} = - \overrightarrow u - \overrightarrow v \]
• Từ BM = MN = NC suy ra \(\overrightarrow {MC} = - 2\overrightarrow {MB} \)
Theo Nhận xét ở Ví dụ 2, Bài 9 (trang 53, Sách bài tập, Toán 10, Tập một), với điểm G ta có:
\(\overrightarrow {GC} - \left( { - 2} \right)\overrightarrow {GB} = \left[ {1 - \left( { - 2} \right)} \right]\overrightarrow {GM} \)
\( \Rightarrow 3\overrightarrow {GM} = \overrightarrow {GC} + 2\overrightarrow {GB} \)
\( \Rightarrow \overrightarrow {GM} = \frac{2}{3}\overrightarrow {GB} + \frac{1}{3}\overrightarrow {GC} = \frac{2}{3}\overrightarrow u + \frac{1}{3}\overrightarrow v \)
Tương tự ta cũng có: \(\overrightarrow {GN} = \frac{1}{3}\overrightarrow u + \frac{2}{3}\overrightarrow v \)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng toạ độ Oxy cho ba điểm A(–2; 1), B(1; 4) và C(5; −2).
Tìm toạ độ trực tâm H và tâm đường tròn ngoại tiếp I của tam giác ABC.
Câu 2:
Cho hình vuông ABCD với độ dài cạnh bằng a. Tích vô hướng \(\overrightarrow {AB} .\overrightarrow {AC} \) bằng:
Câu 3:
Cho tam giác ABC vuông tại A và AB = 3, AC = 4. Độ dài của vectơ \[\overrightarrow {CB} + \overrightarrow {AB} \] bằng
Câu 4:
Cho tam giác ABC đều, trọng tâm G, có độ dài các cạnh bằng 3. Độ dài của vectơ \(\overrightarrow {AG} \) bằng
Câu 5:
Cho hình bình hành ABCD. Gọi M, N theo thứ tự là trung điểm các cạnh AB, CD. Lấy P thuộc đoạn DM và Q thuộc đoạn BN sao cho DP = 2PM, BQ = xQN. Đặt \[\overrightarrow {AB} = \overrightarrow u \] và \[\overrightarrow {AD} = \overrightarrow v .\]
a) Hãy biểu thị các vectơ \[\overrightarrow {AP} {\rm{, }}\overrightarrow {AQ} \] qua hai vectơ \(\overrightarrow u \) và \(\overrightarrow v .\)
b) Tìm x đề A, P, Q thằng hàng.
Câu 6:
Cho hình bình hành ABCD tâm O. Gọi M, N theo thứ tự là trung điểm của BC, AD. Gọi I, J lần lượt là giao điểm của BD với AM, CN. Xét các vectơ khác \(\overrightarrow 0 ,\) có đầu mút lấy từ các điểm A, B, C, D, M, N, I, J, O.
Hãy chỉ ra những vectơ bằng vectơ \(\overrightarrow {AB} ;\) những vectơ cùng hướng với \(\overrightarrow {AB} .\)
Câu 7:
Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 1), B(2; −1), C(4; 6). Trọng tâm G của tam giác ABC có toạ độ là
về câu hỏi!