Câu hỏi:

12/07/2024 1,271

Cho tam giác ABC với trọng tâm G. Lấy điểm A', B' sao cho \[\overrightarrow {AA'} = 2\overrightarrow {BC} ,\] \[\overrightarrow {BB'} = 2\overrightarrow {CA} .\] Gọi G' là trọng tâm của tam giác A'B'C. Chứng minh rằng GG' song song với AB.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Theo kết quả của Ví dụ 3, Bài 9 (trang 53, Sách bài tập, Toán 10, Tập một) ta có:

\(\overrightarrow {{\rm{AA'}}} + \overrightarrow {BB'} + \overrightarrow {CC} = 3\overrightarrow {GG'} \)

\( \Rightarrow \overrightarrow {{\rm{AA'}}} + \overrightarrow {BB'} = 3\overrightarrow {GG'} \)

\( \Rightarrow 2\overrightarrow {BC} + 2\overrightarrow {CA} = 3\overrightarrow {GG'} \)

\( \Rightarrow 2\left( {\overrightarrow {BC} + \overrightarrow {CA} } \right) = 3\overrightarrow {GG'} \)

\( \Rightarrow 2\overrightarrow {BA} = 3\overrightarrow {GG'} \)

\( \Rightarrow \overrightarrow {GG'} = \frac{2}{3}\overrightarrow {BA} \)

Do đó \(\overrightarrow {GG'} \) cùng phương với \(\overrightarrow {BA} \)

Suy ra GG' // AB (do G và G' không nằm trên đường thẳng AB)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng toạ độ Oxy cho ba điểm A(–2; 1), B(1; 4) và C(5; −2).

Tìm toạ độ trực tâm H và tâm đường tròn ngoại tiếp I của tam giác ABC.

Xem đáp án » 08/04/2025 16,993

Câu 2:

Cho hình vuông ABCD với độ dài cạnh bằng a. Tích vô hướng \(\overrightarrow {AB} .\overrightarrow {AC} \) bằng:

Xem đáp án » 13/07/2022 8,148

Câu 3:

Cho tam giác ABC vuông tại A và AB = 3, AC = 4. Độ dài của vectơ \[\overrightarrow {CB} + \overrightarrow {AB} \] bằng

Xem đáp án » 13/07/2022 6,296

Câu 4:

Trong mặt phẳng toạ độ Oxy cho ba điểm A(–2; 1), B(1; 4) và C(5; −2).

Chứng minh rằng A, B, C là ba đỉnh của một tam giác. Tìm toạ độ trọng tâm G của tam giác ABC.

Xem đáp án » 11/07/2024 6,092

Câu 5:

Cho tam giác ABC đều các cạnh có độ dài bằng 1. Lấy M, N, P lần lượt thuộc các cạnh BC, CA, AB sao cho BM = 2MC, CN = 2NA và AM ⊥ NP. Tỉ số của \(\frac{{AP}}{{AB}}\) bằng

Xem đáp án » 13/07/2022 5,927

Câu 6:

Cho tam giác ABC đều, trọng tâm G, có độ dài các cạnh bằng 3. Độ dài của vectơ \(\overrightarrow {AG} \) bằng

Xem đáp án » 13/07/2022 5,840

Câu 7:

Gọi G là trọng tâm của tam giác ABC và M là trung điểm cạnh BC. Khẳng định nào sau đây là một khẳng định đúng?

Xem đáp án » 13/07/2022 5,399
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua