Câu hỏi:
11/07/2024 1,559Cho hình thang vuông ABCD có \[\widehat {DAB} = \widehat {ABC} = 90^\circ ,\] BC = 1, AB = 2 và AD = 3. Gọi M là trung điểm của AB.
Hãy biểu thị các vectơ \[\overrightarrow {CM} ,{\rm{ }}\overrightarrow {CM} \] theo hai vectơ \(\overrightarrow {AB} \) và \[\overrightarrow {AD} .\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Vì M là trung điểm của AB nên \(\overrightarrow {BM} = \frac{1}{2}\overrightarrow {BA} = - \frac{1}{2}\overrightarrow {AB} \)
Gọi E là hình chiếu của C trên AD. Khi đó \(\widehat {CEA} = 90^\circ \)
Tứ giác ABCE có \[\widehat {DAB} = \widehat {ABC} = \widehat {CEA} = 90^\circ \] nên là hình chữ nhật
EA = CB = 1
Mà AD = 3 do đó AE = \(\frac{1}{3}\)AD
\( \Rightarrow \overrightarrow {EA} = \frac{1}{3}\overrightarrow {DA} = - \frac{1}{3}\overrightarrow {AD} \)
Mà \(\overrightarrow {CB} = \overrightarrow {EA} \) (do ABCE là hình chữ nhật)
\( \Rightarrow \overrightarrow {CB} = - \frac{1}{3}\overrightarrow {AD} \)
\( \Rightarrow \overrightarrow {CM} = \overrightarrow {CB} + \overrightarrow {BM} = - \frac{1}{3}\overrightarrow {AD} - \frac{1}{2}\overrightarrow {AB} \)
• Ta có: \(\overrightarrow {CD} = \overrightarrow {CE} + \overrightarrow {ED} \)
Mà \(\overrightarrow {CE} = \overrightarrow {BA} \) (do ABCE là hình chữ nhật)
Và \(\overrightarrow {ED} = \frac{2}{3}\overrightarrow {AD} \)
\[ \Rightarrow \overrightarrow {CD} = \overrightarrow {BA} + \frac{2}{3}\overrightarrow {AD} = - \overrightarrow {AB} + \frac{2}{3}\overrightarrow {AD} \]
Vậy \(\overrightarrow {CM} = - \frac{1}{3}\overrightarrow {AD} - \frac{1}{2}\overrightarrow {AB} \) và \[\overrightarrow {CD} = - \overrightarrow {AB} + \frac{2}{3}\overrightarrow {AD} .\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng toạ độ Oxy cho ba điểm A(–2; 1), B(1; 4) và C(5; −2).
Tìm toạ độ trực tâm H và tâm đường tròn ngoại tiếp I của tam giác ABC.
Câu 2:
Cho tam giác ABC vuông tại A và AB = 3, AC = 4. Độ dài của vectơ \[\overrightarrow {CB} + \overrightarrow {AB} \] bằng
Câu 3:
Cho hình vuông ABCD với độ dài cạnh bằng a. Tích vô hướng \(\overrightarrow {AB} .\overrightarrow {AC} \) bằng:
Câu 4:
Cho tam giác ABC đều, trọng tâm G, có độ dài các cạnh bằng 3. Độ dài của vectơ \(\overrightarrow {AG} \) bằng
Câu 5:
Cho hình bình hành ABCD tâm O. Gọi M, N theo thứ tự là trung điểm của BC, AD. Gọi I, J lần lượt là giao điểm của BD với AM, CN. Xét các vectơ khác \(\overrightarrow 0 ,\) có đầu mút lấy từ các điểm A, B, C, D, M, N, I, J, O.
Hãy chỉ ra những vectơ bằng vectơ \(\overrightarrow {AB} ;\) những vectơ cùng hướng với \(\overrightarrow {AB} .\)
Câu 6:
Cho hình bình hành ABCD. Gọi M, N theo thứ tự là trung điểm các cạnh AB, CD. Lấy P thuộc đoạn DM và Q thuộc đoạn BN sao cho DP = 2PM, BQ = xQN. Đặt \[\overrightarrow {AB} = \overrightarrow u \] và \[\overrightarrow {AD} = \overrightarrow v .\]
a) Hãy biểu thị các vectơ \[\overrightarrow {AP} {\rm{, }}\overrightarrow {AQ} \] qua hai vectơ \(\overrightarrow u \) và \(\overrightarrow v .\)
b) Tìm x đề A, P, Q thằng hàng.
Câu 7:
Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 1), B(2; −1), C(4; 6). Trọng tâm G của tam giác ABC có toạ độ là
về câu hỏi!