Câu hỏi:

11/07/2024 1,171

Cho hình thang vuông ABCD có \[\widehat {DAB} = \widehat {ABC} = 90^\circ ,\] BC = 1, AB = 2 và AD = 3. Gọi M là trung điểm của AB.

Gọi N là trung điểm CD, G là trọng tâm tam giác MCD, và I là điểm thuộc cạnh CD sao cho 9IC = 5ID. Chứng minh rằng A, G, I thẳng hàng.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Cho hình thang vuông ABCD có góc DAB = góc ABC = 90^0 , BC = 1, AB = 2 và AD = 3. Gọi M là trung điểm của AB.Gọi N là trung điểm CD, G là trọng tâm tam giác MCD, và I là (ảnh 1)

Vì G là trọng tâm của tam giác MCD nên ta có:

\(\overrightarrow {AM} + \overrightarrow {AC} + \overrightarrow {AD} = 3\overrightarrow {AG} \)

ABCD là hình chữ nhật nên cũng là hình bình hành

Do đó \(\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AE} \)

\( \Rightarrow 3\overrightarrow {AG} = \overrightarrow {AM} + \left( {\overrightarrow {AB} + \overrightarrow {AE} } \right) + \overrightarrow {AD} \)

\( = \frac{1}{2}\overrightarrow {AB} + \overrightarrow {AB} + \frac{1}{3}\overrightarrow {AD} + \overrightarrow {AD} \) (do \(\overrightarrow {AE} = \frac{1}{3}\overrightarrow {AD} \))

\( = \frac{3}{2}\overrightarrow {AB} + \frac{4}{3}\overrightarrow {AD} \)

Vì I thuộc cạnh CD nên hai vectơ \(\overrightarrow {IC} \) và \[\overrightarrow {ID} \] ngược hướng nhau

Lại có 9IC = 5ID nên \[9\overrightarrow {IC} = - 5\overrightarrow {ID} \] hay \[\overrightarrow {IC} = - \frac{5}{9}\overrightarrow {ID} \]

Theo Nhận xét ở Ví dụ 2, Bài 9 (trang 53, Sách bài tập, Toán 10, Tập một), với điểm A ta có:

\(\overrightarrow {AC} - \left( { - \frac{5}{9}} \right)\overrightarrow {AD} = \left[ {1 - \left( { - \frac{5}{9}} \right)} \right]\overrightarrow {AI} \)

\( \Rightarrow \overrightarrow {AC} + \frac{5}{9}\overrightarrow {AD} = \left[ {1 + \frac{5}{9}} \right]\overrightarrow {AI} \)

\( \Rightarrow \overrightarrow {AC} + \frac{5}{9}\overrightarrow {AD} = \frac{{14}}{9}\overrightarrow {AI} \)

\[ \Rightarrow 14\overrightarrow {AI} = 9\overrightarrow {AC} + 5\overrightarrow {AD} \]

\[ \Rightarrow 14\overrightarrow {AI} = 9\left( {\overrightarrow {AB} + \overrightarrow {AE} } \right) + 5\overrightarrow {AD} \]

\[ \Rightarrow 14\overrightarrow {AI} = 9\overrightarrow {AB} + 9\overrightarrow {AE} + 5\overrightarrow {AD} \]

\[ \Rightarrow 14\overrightarrow {AI} = 9\overrightarrow {AB} + 9.\frac{1}{3}\overrightarrow {AD} + 5\overrightarrow {AD} \]

\[ \Rightarrow 14\overrightarrow {AI} = 9\overrightarrow {AB} + 8\overrightarrow {AD} \]

\[ \Rightarrow 14\overrightarrow {AI} = 6\left( {\frac{3}{2}\overrightarrow {AB} + \frac{4}{3}\overrightarrow {AD} } \right)\]

\[ \Rightarrow 14\overrightarrow {AI} = 6.3\overrightarrow {AG} \] (do \(3\overrightarrow {AG} = \frac{3}{2}\overrightarrow {AB} + \frac{4}{3}\overrightarrow {AD} \))

\[ \Rightarrow 14\overrightarrow {AI} = 18\overrightarrow {AG} \]

\[ \Rightarrow \overrightarrow {AI} = \frac{9}{7}\overrightarrow {AG} \]

Do đó hai vectơ \(\overrightarrow {AI} \) và \[\overrightarrow {AG} \] cùng phương

Suy ra ba điểm A, I, G thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng toạ độ Oxy cho ba điểm A(–2; 1), B(1; 4) và C(5; −2).

Tìm toạ độ trực tâm H và tâm đường tròn ngoại tiếp I của tam giác ABC.

Xem đáp án » 12/07/2024 12,681

Câu 2:

Cho hình vuông ABCD với độ dài cạnh bằng a. Tích vô hướng \(\overrightarrow {AB} .\overrightarrow {AC} \) bằng:

Xem đáp án » 13/07/2022 7,359

Câu 3:

Cho tam giác ABC vuông tại A và AB = 3, AC = 4. Độ dài của vectơ \[\overrightarrow {CB} + \overrightarrow {AB} \] bằng

Xem đáp án » 13/07/2022 6,186

Câu 4:

Cho tam giác ABC đều, trọng tâm G, có độ dài các cạnh bằng 3. Độ dài của vectơ \(\overrightarrow {AG} \) bằng

Xem đáp án » 13/07/2022 5,673

Câu 5:

Cho tam giác ABC đều các cạnh có độ dài bằng 1. Lấy M, N, P lần lượt thuộc các cạnh BC, CA, AB sao cho BM = 2MC, CN = 2NA và AM ⊥ NP. Tỉ số của \(\frac{{AP}}{{AB}}\) bằng

Xem đáp án » 13/07/2022 5,616

Câu 6:

Cho tam giác ABC có AB = 2, BC = 4 và \(\widehat {ABC} = 60^\circ .\) Độ dài của vectơ \(\overrightarrow {AC} - \overrightarrow {BA} \) bằng

Xem đáp án » 13/07/2022 5,094

Câu 7:

Trong mặt phẳng toạ độ Oxy cho ba điểm A(–2; 1), B(1; 4) và C(5; −2).

Chứng minh rằng A, B, C là ba đỉnh của một tam giác. Tìm toạ độ trọng tâm G của tam giác ABC.

Xem đáp án » 11/07/2024 5,041

Bình luận


Bình luận