Câu hỏi:
11/07/2024 1,001Cho hình thang vuông ABCD có \[\widehat {DAB} = \widehat {ABC} = 90^\circ ,\] BC = 1, AB = 2 và AD = 3. Gọi M là trung điểm của AB.
Gọi N là trung điểm CD, G là trọng tâm tam giác MCD, và I là điểm thuộc cạnh CD sao cho 9IC = 5ID. Chứng minh rằng A, G, I thẳng hàng.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Vì G là trọng tâm của tam giác MCD nên ta có:
\(\overrightarrow {AM} + \overrightarrow {AC} + \overrightarrow {AD} = 3\overrightarrow {AG} \)
ABCD là hình chữ nhật nên cũng là hình bình hành
Do đó \(\overrightarrow {AC} = \overrightarrow {AB} + \overrightarrow {AE} \)
\( \Rightarrow 3\overrightarrow {AG} = \overrightarrow {AM} + \left( {\overrightarrow {AB} + \overrightarrow {AE} } \right) + \overrightarrow {AD} \)
\( = \frac{1}{2}\overrightarrow {AB} + \overrightarrow {AB} + \frac{1}{3}\overrightarrow {AD} + \overrightarrow {AD} \) (do \(\overrightarrow {AE} = \frac{1}{3}\overrightarrow {AD} \))
\( = \frac{3}{2}\overrightarrow {AB} + \frac{4}{3}\overrightarrow {AD} \)
Vì I thuộc cạnh CD nên hai vectơ \(\overrightarrow {IC} \) và \[\overrightarrow {ID} \] ngược hướng nhau
Lại có 9IC = 5ID nên \[9\overrightarrow {IC} = - 5\overrightarrow {ID} \] hay \[\overrightarrow {IC} = - \frac{5}{9}\overrightarrow {ID} \]
Theo Nhận xét ở Ví dụ 2, Bài 9 (trang 53, Sách bài tập, Toán 10, Tập một), với điểm A ta có:
\(\overrightarrow {AC} - \left( { - \frac{5}{9}} \right)\overrightarrow {AD} = \left[ {1 - \left( { - \frac{5}{9}} \right)} \right]\overrightarrow {AI} \)
\( \Rightarrow \overrightarrow {AC} + \frac{5}{9}\overrightarrow {AD} = \left[ {1 + \frac{5}{9}} \right]\overrightarrow {AI} \)
\( \Rightarrow \overrightarrow {AC} + \frac{5}{9}\overrightarrow {AD} = \frac{{14}}{9}\overrightarrow {AI} \)
\[ \Rightarrow 14\overrightarrow {AI} = 9\overrightarrow {AC} + 5\overrightarrow {AD} \]
\[ \Rightarrow 14\overrightarrow {AI} = 9\left( {\overrightarrow {AB} + \overrightarrow {AE} } \right) + 5\overrightarrow {AD} \]
\[ \Rightarrow 14\overrightarrow {AI} = 9\overrightarrow {AB} + 9\overrightarrow {AE} + 5\overrightarrow {AD} \]
\[ \Rightarrow 14\overrightarrow {AI} = 9\overrightarrow {AB} + 9.\frac{1}{3}\overrightarrow {AD} + 5\overrightarrow {AD} \]
\[ \Rightarrow 14\overrightarrow {AI} = 9\overrightarrow {AB} + 8\overrightarrow {AD} \]
\[ \Rightarrow 14\overrightarrow {AI} = 6\left( {\frac{3}{2}\overrightarrow {AB} + \frac{4}{3}\overrightarrow {AD} } \right)\]
\[ \Rightarrow 14\overrightarrow {AI} = 6.3\overrightarrow {AG} \] (do \(3\overrightarrow {AG} = \frac{3}{2}\overrightarrow {AB} + \frac{4}{3}\overrightarrow {AD} \))
\[ \Rightarrow 14\overrightarrow {AI} = 18\overrightarrow {AG} \]
\[ \Rightarrow \overrightarrow {AI} = \frac{9}{7}\overrightarrow {AG} \]
Do đó hai vectơ \(\overrightarrow {AI} \) và \[\overrightarrow {AG} \] cùng phương
Suy ra ba điểm A, I, G thẳng hàng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng toạ độ Oxy cho ba điểm A(–2; 1), B(1; 4) và C(5; −2).
Tìm toạ độ trực tâm H và tâm đường tròn ngoại tiếp I của tam giác ABC.
Câu 2:
Cho hình vuông ABCD với độ dài cạnh bằng a. Tích vô hướng \(\overrightarrow {AB} .\overrightarrow {AC} \) bằng:
Câu 3:
Cho tam giác ABC vuông tại A và AB = 3, AC = 4. Độ dài của vectơ \[\overrightarrow {CB} + \overrightarrow {AB} \] bằng
Câu 4:
Cho tam giác ABC đều, trọng tâm G, có độ dài các cạnh bằng 3. Độ dài của vectơ \(\overrightarrow {AG} \) bằng
Câu 5:
Cho hình bình hành ABCD. Gọi M, N theo thứ tự là trung điểm các cạnh AB, CD. Lấy P thuộc đoạn DM và Q thuộc đoạn BN sao cho DP = 2PM, BQ = xQN. Đặt \[\overrightarrow {AB} = \overrightarrow u \] và \[\overrightarrow {AD} = \overrightarrow v .\]
a) Hãy biểu thị các vectơ \[\overrightarrow {AP} {\rm{, }}\overrightarrow {AQ} \] qua hai vectơ \(\overrightarrow u \) và \(\overrightarrow v .\)
b) Tìm x đề A, P, Q thằng hàng.
Câu 6:
Cho hình bình hành ABCD tâm O. Gọi M, N theo thứ tự là trung điểm của BC, AD. Gọi I, J lần lượt là giao điểm của BD với AM, CN. Xét các vectơ khác \(\overrightarrow 0 ,\) có đầu mút lấy từ các điểm A, B, C, D, M, N, I, J, O.
Hãy chỉ ra những vectơ bằng vectơ \(\overrightarrow {AB} ;\) những vectơ cùng hướng với \(\overrightarrow {AB} .\)
Câu 7:
Trong mặt phẳng toạ độ Oxy cho ba điểm A(–3; 1), B(2; −1), C(4; 6). Trọng tâm G của tam giác ABC có toạ độ là
về câu hỏi!