Danh sách câu hỏi
Có 5,318 câu hỏi trên 107 trang
Cho parabol (P) với tiêu điểm F và đường chuẩn ∆. Cũng như elip, để lập phương trình của (P), trước tiên ta sẽ chọn hệ trục tọa độ Oxy thuận tiện nhất.
Kẻ FH vuông góc với ∆ (H ∈ ∆). Đặt FH = p > 0. Ta chọn hệ trục tọa độ Oxy sao cho O là trung điểm đoạn thẳng FH và F nằm trên tia Ox (Hình 56).
Suy ra: \(F\left( {\frac{p}{2};\,\,0} \right),\,\,H\left( { - \frac{p}{2};\,\,0} \right)\) và phương trình đường thẳng ∆ là \(x + \frac{p}{2} = 0.\)
Do đó khoảng cách từ M(x; y) ∈ (P) đến đường thẳng ∆ là \(\left| {x + \frac{p}{2}} \right|\).
Ta có: M(x; y) ∈ (P) khi và chỉ khi độ dài MF bằng khoảng cách từ M tới ∆, tức là:
\(\sqrt {{{\left( {x - \frac{p}{2}} \right)}^2} + {y^2}} = \left| {x + \frac{p}{2}} \right| \Leftrightarrow {\left( {x - \frac{p}{2}} \right)^2} + {y^2} = {\left( {x + \frac{p}{2}} \right)^2}\)
\( \Leftrightarrow {y^2} = {\left( {x + \frac{p}{2}} \right)^2} - {\left( {x - \frac{p}{2}} \right)^2} \Leftrightarrow {y^2} = 2px\).
Cho hai đường thẳng ∆1, ∆2 cắt nhau tại I và có vectơ chỉ phương lần lượt là \(\overrightarrow {{u_1}} ,\,\overrightarrow {{u_2}} \). Gọi A và B là các điểm lần lượt thuộc hai đường thẳng ∆1 và ∆2 sao cho \(\overrightarrow {{u_1}} = \overrightarrow {IA} ,\,\,\overrightarrow {{u_2}} = \overrightarrow {IB} \).
Quan sát Hình 41a, Hình 41b, hãy nhận xét về độ lớn của góc giữa hai đường thẳng ∆1, ∆2 và độ lớn của góc giữa hai vectơ \(\overrightarrow {IA} ,\,\,\overrightarrow {IB} \).