Câu hỏi:

13/07/2024 538

Chứng minh các dãy số un sau đây có giới hạn là 0.

un=1+sinn44n+5.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có n*  thì sinn41un=1+sinn44n+524n+524n=12n  .

Áp dụng định lí “Nếu k là một số thực dương cho trước thì lim1nk=0 ” ta được lim1n=0.Từ đó suy ra  limun=0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh các dãy số un sau đây có giới hạn là 0.

un=1n2n+115n1.

Xem đáp án » 13/07/2024 2,110

Câu 2:

Cho dãy số un với  un=n3n.

 a) Chứng minh rằng un+1un23  với mọi n.

Xem đáp án » 13/07/2024 1,716

Câu 3:

Chứng minh rằng: lim1n+1=0.

Xem đáp án » 13/07/2024 1,677

Câu 4:

Tính giới hạn sau: lim1n.cosnn2+1.  

Xem đáp án » 13/07/2024 1,424

Câu 5:

Xét các câu sau:

(1) Ta có  lim13n=0;

(2) Ta có lim1nk=0 , với k là số nguyên tùy ý.

Xem đáp án » 14/09/2022 1,176

Câu 6:

Dãy số  với un=1.cos5n3n  có giới hạn bằng

Xem đáp án » 14/09/2022 1,093

Câu 7:

Giới hạn limsinπn63n2+1  bằng 

Xem đáp án » 14/09/2022 999

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store