Câu hỏi:

13/07/2024 1,322

Cho hàm số y=sinxxcosxcosx+xsinx

Chứng minh rằng: y'sinxxcosx2x2y2=0 .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: y'=sinxxcosx'cosx+xsinxsinxxcosxcosx+xsinx'cosx+xsinx2

Ta có:

+) sinxxcosx'=cosxx'cosxx.cosx'=xsinx ;

+) cosx+xsinx'=sinx+x'sinx+x.sinx'=xcosx

Do đó: y'=xsinx.cosx+xsinxsinxxcosxxcosxcosx+xsinx2=x2cosx+xsinx2

Ta có: VT=y'sinxxcosx2x2y2

=x2cosx+xsinx2.sinxxcosx2x2.sinxxcosxcosx+xsinx2=0=VP.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Ta có y=sin4x+cos4x=112sin22x=34+14cos4x

Do đó y'=34+14cos4x'=14cos4x'=14sin4x.4x'=sin4x .

Câu 2

Lời giải

Đáp án B

Ta có y'=cot2x'2cot2x=21+cot22x2cot2x=1+cot22xcot2x

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP