Câu hỏi:

24/09/2022 2,665

Cho hàm số y=x3m2x2m+1 có đồ thị là Cm. Có bao nhiêu giá trị m để tiếp tuyến của Cm tại giao điểm của nó với trục tung tạo với hai trục tọa độ một tam giác có diện tích bằng 8?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Ta có M0;1m là giao điểm của Cm với trục tung y'=3x2my'0=m

Phương trình tiếp tuyến với Cm tại điểm M là y=mx+1m

Gọi A, B lần lượt là giao điểm của tiếp tuyến này với trục hoành và trục tung, ta có tọa độ A1mm;0 B0;1m.

Nếu m=0 thì tiếp tuyến song song với Ox nên loại khả năng này.

Nếu m0 ta có: SOAB=812OA.OB=8121mm1m=81m2m=16m=9±45m=7±43

Vậy có 4 giá trị cần tìm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tập xác định D=\2

Ta có: y'=3x+22 Δ:3xy+2=0y=3x+2.

Gọi tiếp điểm của tiếp tuyến cần tìm là Mx0;y0.

Vì tiếp tuyến song song với đường thẳng Δ  nên k=3x0+22=3x0+22=1x0+2=1x0+2=1x0=1x0=3

+ Với x0=1 suy ra  , suy ra tiếp điểm M11;1.

Phương trình tiếp tuyến tại  là: d1:y=3x+11d1:y=3x+2.

Lúc này: d1Δ nên không thỏa mãn.

+ Với x0=3y0=5  ta có tiếp điểm .

Phương trình tiếp tuyến tại  d2:y=3x+3+5d2:y=3x+14.

Vậy có một tiếp tuyến cần tìm là  d2:y=3x+14.

Câu 2

Lời giải

Đáp án A

Ta có: y'=3x2+6x;  d:x+9y=0 hay y=19x .

Gọi d' là tiếp tuyến của (C) vuông góc với d và có tiếp điểm Mx0;y0

Do d'd nên d' có hệ số góc k=9. Do đó y'x0=93x02+6x0=9x0=1y0=9x0=3y0=5

+ Phương trình tiếp tuyến tại điểm M11;9 là: y=9x1+9y=9x.

+ Phương trình tiếp tuyến tại điểm  M23;5 là: y=9x+3+5y=9x+32.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP