Câu hỏi:
02/01/2023 502Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hướng dẫn giải
Ta có: \[F\left( x \right) = \int {\frac{x}{{\sqrt {8 - {x^2}} }}dx} = - \int {\frac{1}{{2\sqrt {8 - {x^2}} }}d\left( {8 - {x^2}} \right) = - \sqrt {8 - {x^2}} + C} \]
Mặt khác \[F\left( 2 \right) = 0 \Rightarrow - \sqrt {8 - {x^2}} + C = 0 \Leftrightarrow C = 2\]
Vậy \[F\left( x \right) = - \sqrt {8 - {x^2}} + 2\].
Xét phương trình \[\begin{array}{l}F\left( x \right) = x \Leftrightarrow - \sqrt {8 - {x^2}} + 2 = x \Leftrightarrow \sqrt {8 - {x^2}} = 2 - x \Leftrightarrow \left\{ \begin{array}{l}2 - x \ge 0\\8 - {x^2} = {\left( {2 - x} \right)^2}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x \le 2\\2{x^2} - 4x - 4 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le 2\\\left[ \begin{array}{l}x = 1 - \sqrt 3 \Leftrightarrow x = 1 - \sqrt 3 \\x = 1 + \sqrt 3 \end{array} \right.\end{array} \right.\end{array}\]
Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!