Nguyên hàm \[I = \int {{e^x}\sin xdx} \] là:
Quảng cáo
Trả lời:
Hướng dẫn giải
Phân tích: Sự tồn tại của hàm số mũ và lượng giác trong cùng một nguyên hàm sẽ rất dễ gây cho người học sự nhầm lẫn, nếu ta sẽ không biết điểm dừng thì có thể sẽ bị lạc vào vòng luẩn quẩn. Ở đây, để tìm được kết quả thì ta phải từng phần hai lần như trong ví dụ 3. Tuy nhiên, với sơ đồ đường chéo thì sao? Khi nào sẽ dừng lại?

Khi đó, ta sẽ có thể kết luận \[I = {e^x}\sin x - {e^x}\cos x - \int {{e^x}\sin xdx} \].
Hay \[2I = {e^x}\sin x - {e^x}.\cos x\]. Vậy \[I = \frac{1}{2}{e^x}\left( {\sin x - \cos x} \right) + C\]
Chọn C.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Phân tích \[f\left( x \right) = \frac{{2x + 1}}{{{x^4} + 2{x^3} + {x^2}}} = \frac{{2x + 1}}{{{x^2}{{\left( {x + 1} \right)}^2}}} = \frac{{2x + 1}}{{{{\left( {{x^2} + x} \right)}^2}}}\]
Khi đó \[F\left( x \right) = \int {\frac{{2x + 1}}{{{{\left( {{x^2} + x} \right)}^2}}}dx} = \int {\frac{1}{{{{\left( {{x^2} + x} \right)}^2}}}d\left( {{x^2} + x} \right)} = - \frac{1}{{{x^2} + x}} + C\].
Mặt khác \[F\left( 1 \right) = \frac{1}{2} \Rightarrow - \frac{1}{2} + C = \frac{1}{2} \Rightarrow C = 1\].
Vậy \[F\left( x \right) = - \frac{1}{{{x^2} + x}} + 1 = - \frac{1}{{x\left( {x + 1} \right)}} + 1 = - \left( {\frac{1}{x} - \frac{1}{{x + 1}}} \right) + 1\].
Do đó \[\begin{array}{l}S = F\left( 1 \right) + F\left( 2 \right) + F\left( 3 \right) + ... + F\left( {2019} \right) = - \left( {1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + ... + \frac{1}{{2019}} - \frac{1}{{2020}}} \right) + 2019\\\;\;\; = - \left( {1 - \frac{1}{{2020}}} \right) + 2019 = 2018 + \frac{1}{{2020}} = 2018\frac{1}{{2020}}\end{array}\]
Chọn C.
Câu 2
Lời giải
Hướng dẫn giải
\[f\left( x \right) = \int {f'\left( x \right)dx} = \int {\frac{2}{{2x - 1}}dx} = \ln \left| {2x - 1} \right| + C = \left\{ \begin{array}{l}\ln \left( {2x - 1} \right) + {C_1}\;khi\;x > \frac{1}{2}\\\ln \left( {1 - 2x} \right) + {C_2}\;khi\;x < \frac{1}{2}\end{array} \right.\]
Vì \[\left\{ \begin{array}{l}f\left( 0 \right) = 1\\f\left( 1 \right) = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{C_2} = 1\\{C_1} = 2\end{array} \right.\].
Suy ra \[f\left( x \right) = \left\{ \begin{array}{l}\ln \left( {2x - 1} \right) + 2\;khi\;x > \frac{1}{2}\\\ln \left( {1 - 2x} \right) + 1\;khi\;x < \frac{1}{2}\end{array} \right.\].
Do đó \[P = f\left( { - 1} \right) + f\left( 3 \right) = 3 + \ln 3 + \ln 5 = 3 + \ln 15\]
Chọn D.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.